Mini-workshop on the use of System Verilog and UVM

Jorgen Christiansen CERN/PH-ESE

Reasons for the workshop

- Several groups now start to use SV and UVM (both inside and outside CERN)
 - Design and verification of complex ASICs
 - (Design and) Verification of complex FPGA's
- Training
 - 24 people has followed 1 week training at CERN (Doulos course)
 - Other training (IMEC, etc.)
- Normal/old RTL Verilog (and VHDL) very good for design (synthesis) but often not sufficient for verification of very complex digital designs/systems
- Many different Verification options
 - Verilog RTL design with SV + UVM
 - Same tool/simulator from gate level to very high level
 - OSVVM: Open Source VHDL Verification Methodology
 - VHDL RTL design with SV + UVM
 - Verilog/VHDL RTL with C++ for complex verification
 - System C (or C++) for Verification (and design)
 - Other?

It can be discussed for long time what is best

- Depends on nature of project
- Depends on people in the project (e.g. their background: Verilog, VHDL, C++)

SV + UVM

- Three "levels":
 - Design/RTL/synthesis/gate level
 - High level verification features in SV: Object oriented, transaction level, Constrained random , ,
 - UVM for standardizing and reuse verification methodology

The merging of the three levels has become a "usine a gas".

- The community:
 - Hardware designers
 - Verification software

In (large) companies making complex designs a person normally does not do both hardware design and high level verification.

Two different teams/groups

Different expertise and background (hardware – software)

One better not verify ones own design (tends to make same "mistakes")

Parallel design and verification to shorten time to market

Companies often have a verification environment from previous similar designs (maximize reuse of both design and verification)

In HEP we often have to do everything with very few people.

Workshop and our community

- Presentations of who is doing what with SV + UVM
- Exchange of practical experiences:
 - What works well and what does not
 - Ideas of how to do things efficiently
 - Simulators and related tools
 - Sources of useful information
 - ?
- Possible collaboration among people/groups ?.
 - Reuse across projects/groups (often difficult in HEP)
 - RD53: ATLAS/CMS/LCD pixel simulation/verification framework
 - Other?
- Email group for questions and ideas within our small community: <u>system-verilog@cern.ch</u>
 - Such an Email group is only useful if being actively used by community.
- If appropriate, we can repeat such a mini workshop later.