
Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Test Environment for the

Common Modular Architecture
Static Limitations of the UVM Class Library

Marcel Alsdorf
14. November 2013

Beams Department, CERN

1 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

1 Overview of CMA Modules

2 UVM Environment for CMA Modules
Virtual Interfaces
Sequence Items
Components
Sequences
Configuration

3 Static Limitations of UVM

2 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Overview of CMA Modules

Chapter 1

Overview of CMA Modules

3 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Overview of CMA Modules

1:1 CMA Module

CMA Interface (CMI)
DATA - the actual
information
VLD/NEXT - handshake
between modules

Parameters
inp_data_size - size of
the input data
out_data_size - size of
the output data

4 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Overview of CMA Modules

N:M CMA Module

Parameters
inp_data_size[] - diff.
sizes of the input data
out_data_size[] - diff.
sizes of the output data
N - # of CMI Inputs
M - # of CMI Output

5 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules

Chapter 2

UVM Environment for CMA
Modules

6 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules

Goals

1 Able to verify any CMA module independent of internal functionality using
the same Test Environment

2 Include the degrees of freedom of CMA modules (parameters) as part of
the Test Environment

3 Decrease the necessary changes/adaptations in extended classes with
every module test to a mimimum

7 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules

General Overview

8 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Virtual Interfaces

Chapter 2.1

Virtual Interfaces

9 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Virtual Interfaces

CMI Input Virtual IF

General
connects the class world
with the module world
is an actual SV interface

Protocol Assertions
Unknown Signal Values
Checks
Invalid States Checks
Timing Relationship
Checks

10 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Sequence Items

Chapter 2.2

Sequence Items

11 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Sequence Items

CMA Input Item

Specifics
used by the input agent’s
sequencer and driver
is a parameterized class
(factory registration
different)
defines the typical
sequence item methods

12 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Sequence Items

CMA Output Item

Specifics
used by the output
agent’s sequencer and
driver
is actually not a
parameterized class (no
control over data lines)
defines the typical
sequence item methods

13 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Sequence Items

CMA Analysis Item

Specifics
used by the input/output
agent monitors and by
the Analysis
Environment
is a parameterized class
defines the typical
sequence item methods

14 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Components

Chapter 2.3

Components

15 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Components

CMI Input Agent

Subclass Tasks
Sequencer - runs sequences
based on CMI Input Items
Driver - communicates
appropriately with the VIF
Monitor - monitors the VIF and
forwards a CMI Analysis Item
Protocol Coverage - covers all
State Transitions etc.
Config - configuration object of
the agent

16 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Components

CMI Input Agent

16 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Components

CMI Input Agent

Agent Tasks
receives parameters through the
config object
factory-creates sub-components
(<name>::create ...)
connects sub-components with
each other
creates ports and connects them
with sub-components

16 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Components

CMA Input Environment

Tasks
gets the parameters from its
config object
creates config objects for the
sub-components (agents)
factory-creates the agents
creates and connects ports with
agents

17 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Components

CMA Analysis Environment

Input Subclass Tasks
Stimulus Coverage - module
dependent coverage points
concerning module stimulus
Predictor - user-defined model
of the DUT behaviour

Output Subclass Tasks
Design Coverage - module
dependent coverage points
concerning module results
Comparator - compares
projection with reality

18 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Components

CMA Analysis Environment

Input Subclass Tasks
Stimulus Coverage - module
dependent coverage points
concerning module stimulus
Predictor - user-defined model
of the DUT behaviour

Output Subclass Tasks
Design Coverage - module
dependent coverage points
concerning module results
Comparator - compares
projection with reality

Each class has to be user-extended depending on Module functionality

18 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Components

CMA Environment

Tasks
highest-level environment
receives parameter through
config objects
creates config objects for
sub-enviroments
builds sub-environments and
connects them

19 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Sequences

Chapter 2.4

Sequences

20 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Sequences

Overview

Standard Sequences
are objects and therefore they
are not part of the initial
phasing (build/connect)
created and destroyed during
runtime
are running on a sequencer
utilize sequence items as
communication objects
configuring sequences through
the config_db is limited and only
possible through a sequencer

Virtual Sequences
are objects as well
distributes, creates and destroys
other sequences
can run on a virtual sequencer
(not recommended)
their interactions are defined in
a body() method
can not receive informations from
the config_db

21 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Sequences

CMI Input Sequence Hierarchy

22 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Sequences

CMI Input Sequence Hierarchy

22 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Configuration

Chapter 2.5

Configuration

23 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Configuration

Overview

convenience layer on top of the resource_db (adds hierarchical path as
scope)
using the resource_db is not recommended
should be used to transfer virtual interface pointers and configuration
information to components during initial phasing
this should be done mainly by using configuration objects
can be used dynamically during the run_phase (objects)
but calling set() or get() at runtime is expensive and should be avoided
therefore using the config_db in objects is not recommended

24 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Configuration

CMA Component Configuration Tree

25 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

UVM Environment for CMA Modules – Configuration

Configuring Sequences

Should be avoided, but if necessary:

get_full_name()
uvm_config_db#(TYPE)::get(null, this.get_full_name(), field", field);

sequences do not have hierarchy until they have been started on a
sequencer
once started, get_full_name() will return a hierarchy string for your
sequence
this string either includes the parent sequence’s hierarchy or the
hierarchy of the sequencer that the sequence was started on

26 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Static Limitations of UVM

Chapter 3

Static Limitations of UVM

27 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Static Limitations of UVM

Analysis Items

28 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Static Limitations of UVM

Analysis Items

1. Solution
Remove data_size from Items

28 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Static Limitations of UVM

Analysis Items

1. Solution
Remove data_size from Items 2. Solution

Create our own uvm_analysis_port

28 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Static Limitations of UVM

Analysis Items

1. Solution
Remove data_size from Items 2. Solution

Create our own uvm_analysis_port

Both Solution are reasonably unclean and cumbersome

28 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Static Limitations of UVM

Virtual Sequencer

Declaring Sequencers
leads to same static declaration
problem as seen before
virtual sequence cannot receive
informations from the config_db

Solution
Rewrite the complete virtual se-
quence by hand for every test (no
base class)

29 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Static Limitations of UVM

General Solution

1 Factory ?
Idea: extend a non-parameterized base class with a parameterezied version
but an instance of a class can only be overwritten when it is being
factory-created somewhere
uvm_analysis_port can not be factory created (not part of the hierarchy)
sequences are also actually not part of the hierarchy, but there are ways to
bypass this limitations
still cumbersome and unclean

2 Code Generator

Result: cleaner classes in the test environment
bypasses those static limitations of SV
possibilities to generate main structures of the user-extended classes

30 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Static Limitations of UVM

General Solution

1 Factory ?
Idea: extend a non-parameterized base class with a parameterezied version
but an instance of a class can only be overwritten when it is being
factory-created somewhere
uvm_analysis_port can not be factory created (not part of the hierarchy)
sequences are also actually not part of the hierarchy, but there are ways to
bypass this limitations
still cumbersome and unclean

2 Code Generator
Result: cleaner classes in the test environment
bypasses those static limitations of SV
possibilities to generate main structures of the user-extended classes

30 / 31UVM Test Environment for the Common Modular Architecture
N



Overview of CMA Modules UVM Environment for CMA Modules Static Limitations of UVM

Static Limitations of UVM

General Solution

1 Factory ?
Idea: extend a non-parameterized base class with a parameterezied version
but an instance of a class can only be overwritten when it is being
factory-created somewhere
uvm_analysis_port can not be factory created (not part of the hierarchy)
sequences are also actually not part of the hierarchy, but there are ways to
bypass this limitations
still cumbersome and unclean

2 Code Generator
Result: cleaner classes in the test environment
bypasses those static limitations of SV
possibilities to generate main structures of the user-extended classes

Thank you for your attention!

30 / 31UVM Test Environment for the Common Modular Architecture
N


	Overview of CMA Modules
	UVM Environment for CMA Modules
	Virtual Interfaces
	Sequence Items
	Components
	Sequences
	Configuration

	Static Limitations of UVM

