
SystemVerilog and UVM
for the ABC system

verification
Francis Anghinolfi 14

 N
o

v
20

13

S
y

st
e

m
V

e
ri

lo
g

 M
in

iW
o

rk
sh

o
p

OUTLINE

 The ABC verification environments

 SystemVerilog and UVM

 UVM techniques for the ABC system

 Development plans

 SystemVerilog for ABC system?

14 Nov 2013 SystemVerilog MiniWorkshop 2

The ABC verification environment

 What is ABC function (in short)

256 ch events

L0 trigger

R3 trigger

L1 trigger

Commands

Buffer

Actions

Buffer

Buffer

R
ea

d
o

u
t

Packets

Verification does (in short) :
Stimulation of hits, triggers, commands
Analysis of packets (in relation to Stimulations)

14 Nov 2013 SystemVerilog MiniWorkshop 3

 One of the verification setup (verilog only based)

Test Harness

Verification does (in short) :
Stimulation of hits, triggers, commands, precoded time relations
Analysis of packets (in relation to Stimulations)

tbInclude DUT

The ABC verification environment

tests

tasks Clocks, fixed sequences

Sequence orders

Python
Analysis

Analyser

14 Nov 2013 SystemVerilog MiniWorkshop 4

Joel de Witt UCSC
F.A. CERN

The ABC verification environment

 Algorithm Development Using Matlab and Cadence Incisive

‘Matlab Test Bench .m functions’

STIMULUS RESPONSE

Input
Arguments HDL ENTITY

HDL TEST BENCH

Matlab GUI output

Cadence Incisive Verilog Simulator
14 Nov 2013 SystemVerilog MiniWorkshop 5

Michelle
Key-Charriere
@ RAL

The ABC verification environment

 Object Oriented Software Trace

Base
Object

Input
Monitor

Score
Board

Output
Monitor

Txgen

Test
Cases

Driver DUT

- Verilog (RAM based test vectors)

- System Verilog

- Device Under Test: Verilog

Michelle
Key-Charriere
@ RAL

14 Nov 2013 SystemVerilog MiniWorkshop 6

SystemVerilog and UVM

 MY starting point : the SystemVerilog training course ….

(Sorry Mr. Fitch!
It was a

wonderful
course!)

14 Nov 2013 SystemVerilog MiniWorkshop 7

SystemVerilog and UVM

 And later on about UVM …. (from an Accelera course slide)

YES !

?????

14 Nov 2013 SystemVerilog MiniWorkshop 8

SystemVerilog and UVM

 At least I have seen the interest of THIS feature in SV/UVM :

$RANDOM !

In the spirit of SV, this has to do with test & functionality coverage,
through generation of random data and address sets.

For exp. systems the feature becomes naturally useful as experiments
have to deal with random (physics) data AND random triggers time
distributions ((with constraints )…)

14 Nov 2013 SystemVerilog MiniWorkshop 9

 So generating random physics data set is an easy trick

rand int unsigned hit;

constraint Hits (hit dist {[0,255]};)

for (int i=0;i<256;i++)

 begin

 if (i == hit) hitbus[i] = 1;

 else

 hitbus[i] = 0;

 end

SystemVerilog and UVM

transacti
on

driver

14 Nov 2013 SystemVerilog MiniWorkshop 10

SystemVerilog and UVM

transaction

sequence
r

 What about getting a fix pattern data ?

rand bit [57:0] com0;

constraint busy0 {com0[7:0] dist {[0:255]}; }

constraint busy1 {com0[15:8] dist {[0:255]}; }

Data = { 4'h3, 4'h0, 4'h0, 4'h0, 4'h1, 4'hf, 3'h0,LEFT, 4'h1};

`uvm_do_with (req, {com0[57:0] == {HEADER, HCCField, HCCID,
ABCID, RegAdress, WRITE, Data} ; start_data < 100;})

Com0 is 58 bits word : 2^58 = 288230376151711744, seems beyond SV limits
14 Nov 2013 SystemVerilog MiniWorkshop 11

UVM for the ABC verification

Interface

DUT

Monitor

Sequence

driver

Agent

Sequencers

P_sequence

env

test

Transaction !

What appeared
is that UVM is a
sort of wrapper
formalism for
SystemVerilog

UVM is a
METHODOLOGY

Predefined list of
files

Preformatted files
contents

14 Nov 2013 SystemVerilog MiniWorkshop 12

UVM for the ABC verification

 For ABC the interest is in running parallel transactions

sequence driver agent

L0C
OM
inter
face

sequence driver agent

inter
face

sequence driver agent

se
q

u
e

n
ce

rs

en
v

te
st

D
U

T

Hit

L0

COM

sequence driver agent

sequence driver agent

R3L1
inter
face

L1

R3
14 Nov 2013 SystemVerilog MiniWorkshop 13

transaction

transaction

transaction

transaction

transaction

UVM for the ABC verification

HitBus_if si (clk);
 ABCDriveCOML0_if comL0_si (clk);
 ABCDriveR3L1_if R3L1_si (clk);

ABC_top.sv (module)

task main_phase(uvm_phase phase);

 phase.raise_objection(this);
 begin
 // create and start the virtual sequence
 virtual_seq vseq;
 vseq = virtual_seq::type_id::create();
 vseq.start(m_env.m_virtual_seqr);
 end
 phase.drop_objection(this);
 endtask: main_phase

ABC_test1.sv (class)

ABC_env.sv (class)

m_virtual_seqr.HitBus_seqr =
 m_HitBus_agent.m_sequencer;
m_virtual_seqr.COM_seqr =
 m_COM_agent.m_sequencer;
m_virtual_seqr.L0_seqr =
 L0_agent.m_sequencer;
m_virtual_seqr.L1_seqr =
 L1_agent.m_sequencer;

14 Nov 2013 SystemVerilog MiniWorkshop 14

UVM for the ABC verification

virtual ABCDriveCOML0_if vif;

 m_driver.L0_si = vif;
 m_driver.seq_item_port.connect

(m_sequencer.seq_item_export);

L0_agent.sv (class)

virtual ABCDriveCOML0_if.senderL0 L0_si;

virtual task drive_L0_trans (ABCDriveL0_transaction tl0);
 drive_L0 (tl0.L0, 2*bit_period*tl0.L0_dist);
endtask : drive_L0_trans

seq_item_port.get(tl0); // Get
 drive_L0_trans(tl0); // and Drive

L0_Driver.sv (class)

.

.

.

.

.

.

.

.

.

Same (similar) class definitions for the
3 other transactions (L1, com, Hit)

Interface decl.

Seq. to Drive connection

Transaction, interval

Get and Drive
14 Nov 2013 SystemVerilog MiniWorkshop 15

UVM for the ABC verification

L1_sequence.sv (class)

task body; // Does L1 selection within count

 for (int i=0; i<=count;i++)

 begin

 L1val = L1val+1;
 $display ("L1val = \t %b, count = \t %b", L1val[7:0], i);

`uvm_do_with (req, {L1C[10:0] == {HEADER, L1val} ; L1_dist = $dist_exponential(1,400);})
end

Number of L1 sequences

11bits sequence, 3 bits Header, 8 bits binary count number,
Interval btw. sequences with exponential distribution

14 Nov 2013 SystemVerilog MiniWorkshop 16

UVM for the ABC verification

L1_transaction.sv (class)

rand bit [10:0] L1C;
 constraint busy9 {L1C dist {[0:2047]}; }

rand bit pick_L1; // Select First Level Trigger signal
 constraint busy10 {pick_L1 dist {0 :/ 9, 1 :/ 1}; } // 10% at 1

rand int unsigned L1_dist;
 constraint val1 {L1_dist dist {[200:400]}; }

Variables declarations
with constraints

14 Nov 2013 SystemVerilog MiniWorkshop 17

UVM for the ABC verification

Hit

COM

L0

L1

14 Nov 2013 SystemVerilog MiniWorkshop 18

UVM for the ABC verification

Hit

COM

L0

L1

14 Nov 2013 SystemVerilog MiniWorkshop 19

Development plans

 Develop the control & input sequences close to real case

 Join with the existing setup for ABC+HCC system, developed
at RAL by M. Key-Charriere

 Explore the random nature of stimuli to verify/validate the
response of the ABC/HCC to false commands, bit errors,
disordered triggers etc …

14 Nov 2013 SystemVerilog MiniWorkshop 20

SV/UVM for ABC system ?

 Could I have described the same sequences with std. verilog ?

 My experience : a veeery looooong training process

 UVM methodology saved me : I think I could not do the job
with SystemVerilog without the UVM formalism

 The monitor/checker options did not look so attractive,
however I did not do much work there

 Pay off for the effort …. ?

14 Nov 2013 SystemVerilog MiniWorkshop 21

