ILC ORIENTED R&D IN ITALY

A bright future behind us

Massimo Caccia Uni. Insubria & INFN

IRFU, November 29, 2013

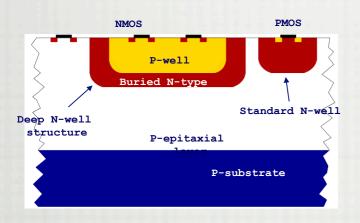
acceleration related activities within the GDE:

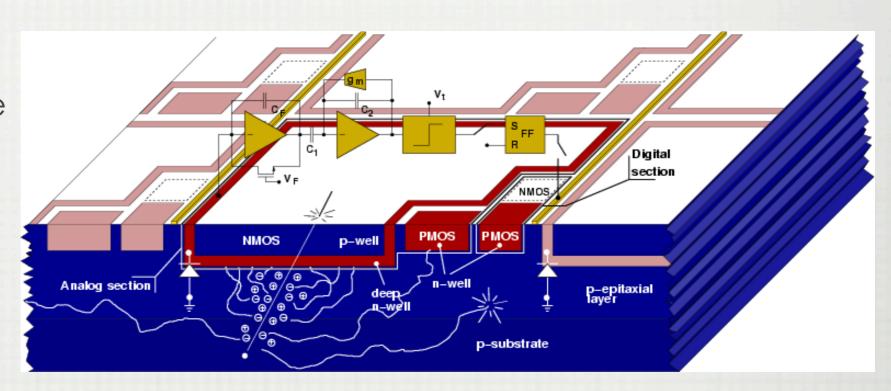
- design of the Damping Rings [Susanna Guiducci at LNF-Frascati]
- design of the Main Linac [Paolo Pierini at LASA-Milano]

mission accomplished with the TDR fulfillment; since then, the ILC related activity dropped to a minimal level, limited to a participation to the FP7 project EUCARD-2 (Enhanced European Coordination for Accelerator Research & Development) on Low Emittance Rings.

detector related R&D:

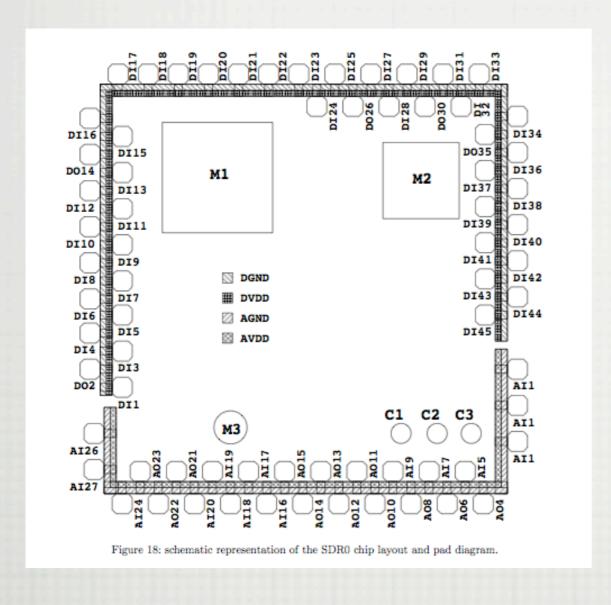
- early activities by Paolo Checchia et al. on a hybrid (Silicon + Scintillator) e.m. calorimeter (http://www.pd.infn.it/~checchia/lcit/ Welcome.html) (LCCal collaboration) (1999-2005) + Technology development on hybrid pixels with capacitive coupling (MCa)
- P-ILC, supported by INFN-CSN1 on vertexing (EUDET included), SiPM +Scintillator tile hadron calorimetry & simulation for the IV concept (2006-2009)+independent DREAM activities
- MCS, supported by INFN-CSN5, possibly the indication of a soft restart [2014, Stefano Veneziano, Simonetta Gentile (Roma1) and MCa]

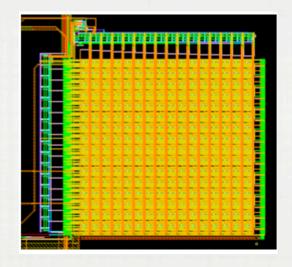

A bit more about P-ILC:

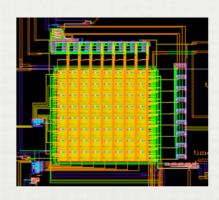

	FTE 2006	FTE 2007	FTE 2008	FTE 2009
Milano	3.1	3.4	3.3	3.5
Roma 3	1.0	2.2	0.7	0.2
Ferrara	1.0	2.0	1.7	0.8
Pavia	3.0	4. 5	5.5	2.5
Lecce	-	2.5	2.5	2.3
LNF	-	2.1	2.0	1.7
Roma 1	-	2 (3.9)	2	1.0
Tot. FTE	8.1	18.7	17.7	12.0

with investment of ~ 120 kEUR/year [Additional cost, manpower excluded]

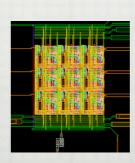
About VTXing (Pavia/Bergamo/Roma III): the focus has been on the STm 130 nm triple-well technology


In triple-well CMOS
processes a deep Nwell (DNW) is used to
isolate N-channel
MOSFETs from substrate
noise

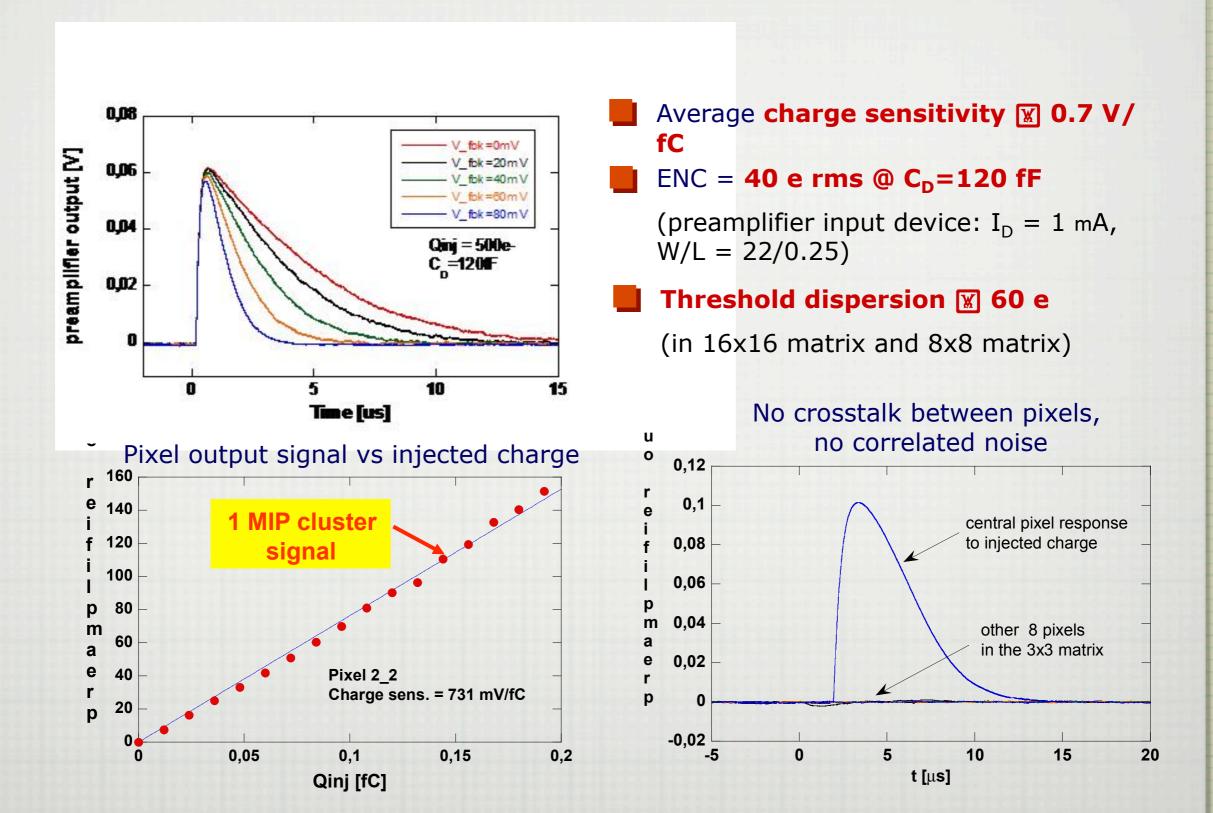



- A DNW is used to collect the charge released in the epitaxial layer
- NMOS devices of the analog section are built in the deep N-well
- a standard Charge Sensitive amplifier and a 1-bit memory cell for on-pixel sparsification can be implemented

The ILC oriented demonstrator (25 micron pitch) [2006-2008]:



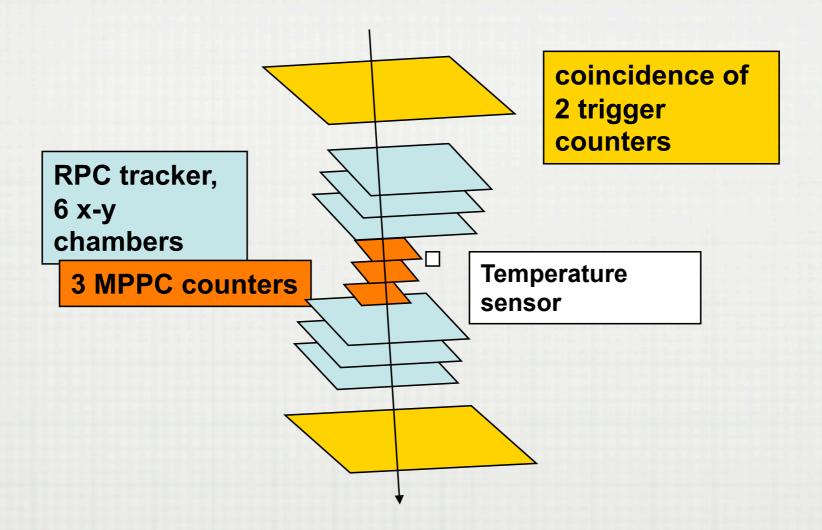
M1 16 x 16 pixels Full digital machine Binary output



M2
8 x 8 pixels
Full digital machine
Analog output of a selected
pixel

M3
3 x 3 pixels
NO digital machine
Analog output of all of the pixels

A snapshot of the basic features:



A key questions: what are these artists doing by now?

- Eleuterio Spiriti moved from Roma III to LNF and he's involved in the ALICE upgrade
- Valerio Re, Ludovico Ratti & co-workers joined the VLSI 65 nm project, with a focus on the CMS upgrade [after a period invested in the SuperB project & on 3D technologies]
- Antonio Bulgheroni is at JRC-Karlsruhe; gone with the wind...

SO: there's certainly a significant "Silicon Community" in Italy, however the GoodOldBoys are fully committed by now and I am optimistic about the involvement of "freshmen", provided the ILC scenario is more clear.

About CALOrimetry (Roma I/LNF): the focus has been on an analog hadron calorimeter based on scintillating tiles + SiPM

100-150 evts/day with x-y tracking on the 3x3cm2 tiles

Test set-up for the characterization (photo-electron/mip, uniformity) of different prototype tile (wrt scintillator, engineering and sensors; 2007). Cosmics + BTF@LNF

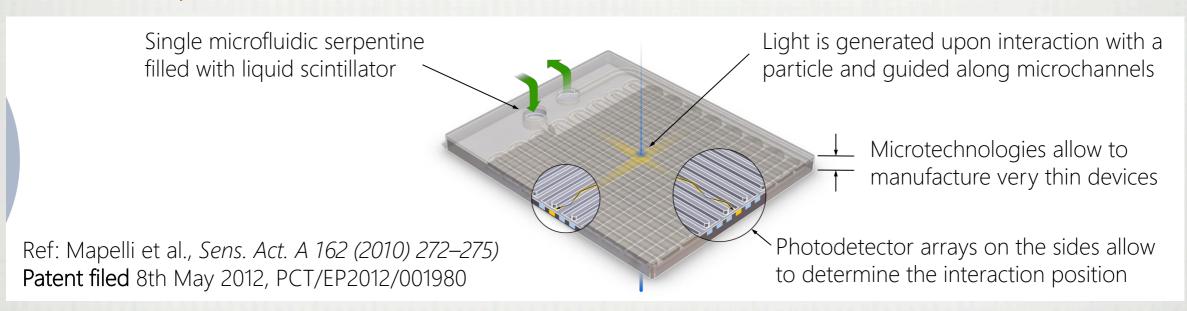
The MagicBox used to test 10 tiles in one run:

Taxonomy:

- Ch.1 BC400 5mm, Hamamatsu 400 pixels[SiPM glued on the side face]
- Ch.2 BC400 5mm, Hamamatsu 1600 pixels
- Ch.3 "CCCP" scint 5mm, Hamamatsu 400 pixels
- Ch.4 EJ212(BC400 eq.) 2mm, Hamamatsu 400 pixels
- Ch.5 EJ212(BC400 eq.) 2mm, Hamamatsu 1600 pixels
- Ch.6 BC400 5mm, Hamamatsu 3x3mm² [SiPM glued in the centre]
- Ch.7 CALICE tile, MePhi (CALICE reference) [WLS fiber]
- Ch.8 BC400 5mm, IRST SiPM
- Ch.9 BC400 5mm, SensL 1300 pixels
- Ch.10-EJ212(BC400 eq.) 2mm, SensL 1300 pixels

Motivations:

- (1 vs 2) + (4 vs 5) measure the effect of the PDE
- (1 vs 4) + (2 vs 5) tile thickness
- 1 vs 3:scintillator producer
- 1 vs 6: sensor area
- (1,2) vs (8,9): different SiPM producers (5mm thick tile)
- (4,5) vs 10: different SiPM producers (5mm thick tile)
- Compare to the CALICE benchmark


The same key questions: what are these artists doing by now?

- Sandro Calcaterra joined BESIII
- Riccardo de Sangro joined BELLE II
- Simonetta Gentile: very active in ATLAS but still very interested

So, the answer is not so different w.r.t. the VTX community...

A soft step back to the future: the Micro Capillari Scintillanti project (INFN, CERN, EPFL), lead by Stefano Veneziano@Roma 1 and joined by Simonetta Gentile & MCa

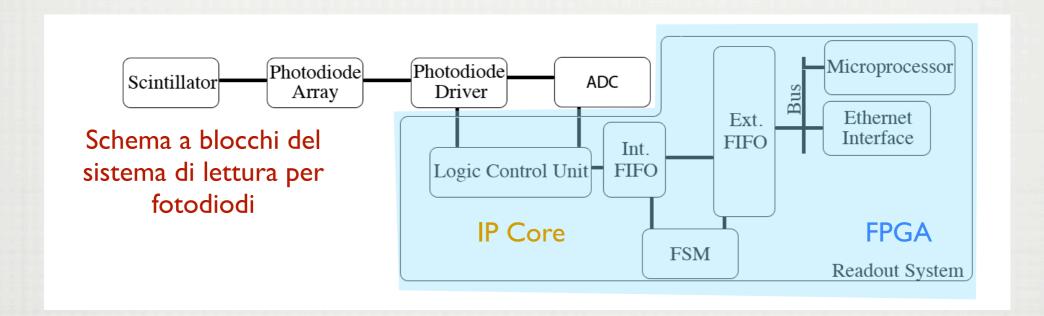
The concept of MicroFluidic Scintillation Detectors:

First results:

SU-8 (n=1.6) microchannels filled with methylene diiodide (n=1.8) + rhodamine 6G fluorescent dye

Green light (spot Ø ~ 4mm)

Hamamatsu photodiode array (PCB)


Filled chip Light spot Ø ~ 4 mm

Chip Chip 200 200 250

Photodetector pixel number

500 µm pitch between the channels

The know-how in the read-out of the detector can be interesting for the ILC, since SiPM are the photosensors of choice for MCS:

FPGA with embedded processor, essentially the same platform used by the University of Mainz for re-designing the Clock&ControlCard and the "DataAggregator" for the Analog HCAL [see the talk by Aliakbar Ebrahimi at LCWS2013]

A first step was taken during LCWS2013 and we joined Tohru Takeshita and Katsushige Kotera in the optimization of the "small tile design" for an Ecal based on scintillating "strips" (45x5x1mm³)

No fireworks, nothing but a small activity hopefully marking a comeback...

Final remarks

- at LCWS it was clear that a *phase transition* is ongoing for ILD and SiD moving towards optimization, integration and questions at system level, so it would really the right time to re-start..
- No doubts the INFN potential is quite high; however, till when the scenario will be more clear it will be hard to have a commitment beyond the bare survival level [the push by the LHC community and the budget constraints simply do not allow it]
- in such a phase, waiting for the sun to rise, IMHO 3 issues might be relevant to trigger a stronger commitment:
 - actions involving Italian companies (e.g. in Silicon pad production [FBK and STm] and optimized pcb for the Ecal, as discussed with JCBrient)
 - having a fair degree of co-funding by external resources (possibly the main issue in the afternoon discussions)
 - laction for the providing a technology platform common to other HEP experiments [e.g. MAPS for STAR and ALICE, SiEcal for the CMS upgrade]