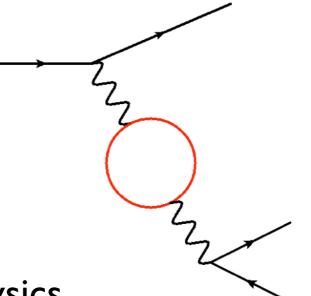
Precision measurements and predictions for Mw, electroweak and top

Lisa Zeune French IRFU Linear Collider Days 27 November 2013



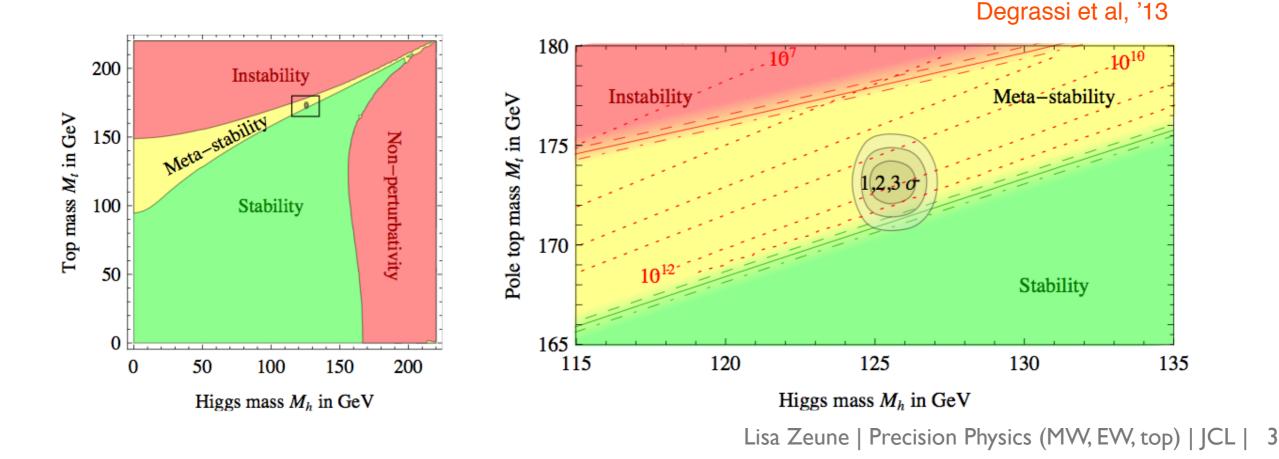
Why do we need precision measurements?

$\sin^2\theta_{\rm eff}, M_W, \dots$

Electroweak precision observables

 M_W , $\sin^2 \theta_{\text{eff}}$, a_μ ...

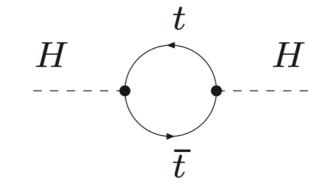
- Highly sensitive to quantum effects of new physics
- Precise theoretical calculation + precise experimental measurement


 \longrightarrow Test of theory

- → Discrimination between models
- Probe of new physics even if BSM particles are out of reach for LHC / ILC

Why do we need precision measurements?

top quark mass


- Heaviest fundamental particles, largest coupling to Higgs
 - window to new physics at TeV scale / is there an underlying theory describing the mass hierarchy in the fermion sector?
- Is the SM Higgs potential stable?

Why do we need precision measurements?

top quark mass

- Radiative corrections:
 - \searrow Loop contributions proportional to $m_t^2,\ m_t^4$
 - \longrightarrow Large theory uncertainty in prediction of M_W , $\sin^2 \theta_{\text{eff}}$: parametric uncertainty from m_t
 - \longrightarrow To have sensitivity to new physics, top mass must be known very precisely
- Close connection to Higgs physics
 - \longrightarrow Large coupling of the Higgs to the top quark
 - \checkmark One-loop corrections: $\Delta M_h^2 \sim G_\mu C m_t^4$

- \longrightarrow Higgs mass depends sensitively to m_t in all models where M_h can be predicted, e.g. SUSY (it is a free parameter in the SM)
- \longrightarrow Precision Higgs physics needs precision top physics

ILC measurements

- Clean experimental environment
- Tunable energy: possibility to carry out measurements at particles production thresholds
 - >>> Possible to run at Z resonance (Giga-Z),WW threshold, top-antitop threshold

ILC,TDR '13			
Energy	Reaction	Physics Goal	
91 GeV	$e^+e^- \rightarrow Z$	ultra-precision electroweak	
160 GeV	$e^+e^- \rightarrow WW$	ultra-precision W mass	
250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings	
350–400 GeV	$e^+e^- \rightarrow t\bar{t}$	top quark mass and couplings	
	$e^+e^- \rightarrow WW$	precision W couplings	Approach for ILC in Japan:
	$e^+e^- ightarrow u\overline{ u}h$	precision Higgs couplings	start at 250 GeV
500 GeV	$e^+e^- ightarrow f\overline{f}$	precision search for Z'	
	$e^+e^- ightarrow t \bar{t} h$	Higgs coupling to top	(precision Higgs measurements),
	$e^+e^- ightarrow Zhh$	Higgs self-coupling	upgrade in stages via top-pair
	$e^+e^- ightarrow ilde{\chi} ilde{\chi}$	search for supersymmetry	threshold up to 500 GeV
	$e^+e^- \rightarrow AH, H^+H^-$	search for extended Higgs states	(top quark properties)

- Polarized electron and positron beams
 - method to enhance signal over background
- Possible to perform high precision measurements

What is the top mass?

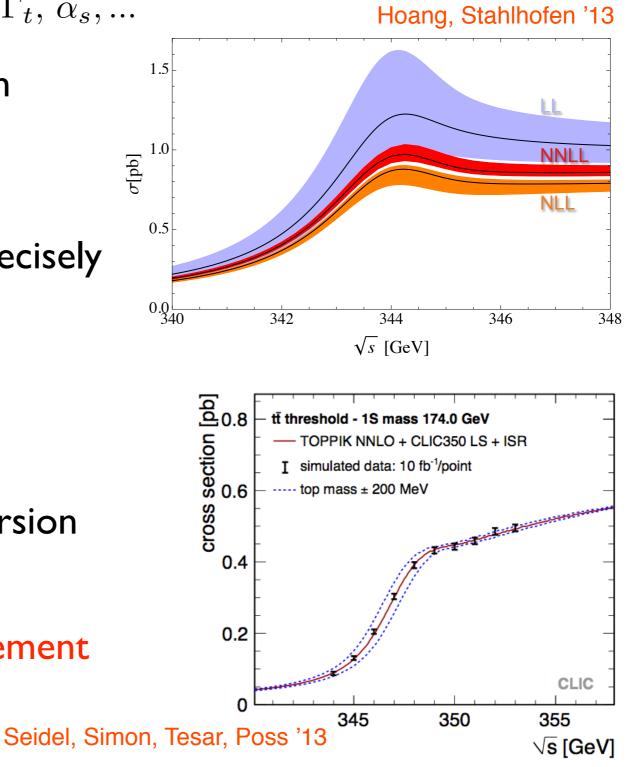
- What is the mass of an unstable colored particle?
- In theoretical calculations: \overline{MS} mass, pole mass, ... well defined in perturbation theory (pole mass not infrared save)

Measurement of the top mass:

- Typically experimentally measured (done at LHC and Tevatron): kinematic reconstruction, fit to invariant mass of decay products
 - + Can be performed at arbitrary energy above threshold
 - This is not used in theory (Invariant mass believed to be close to pole mass)
 - No well defined conversion to \overline{MS} mass

Threshold scan

• At Linear Collider possible to run at top-antitop threshold


 \longrightarrow Very precise measurement of $m_t, \, \Gamma_t, \, \alpha_s, ...$

- Measurement can be compared with accurate theory prediction
- Threshold mass can be converted to \overline{MS} mass: Conversion formula precisely known and well under control
- ILC prediction:

 $\Delta m_t = 0.1 \text{ GeV}$

theoretical uncertainty (from conversion formula) dominates

 Qualitative and quantitative improvement in top mass measurement

Other top measurements at a LC

Coupling of top to gauge bosons

 \longrightarrow Sensitive to new physics modifying the e.g the $Zt\bar{t}$ vertex

Sign of coupling, electric charge, spin

- Higgs coupling to top
- Asymmetries, e.g. forward-backward asymmetry $A_{
 m FB}$

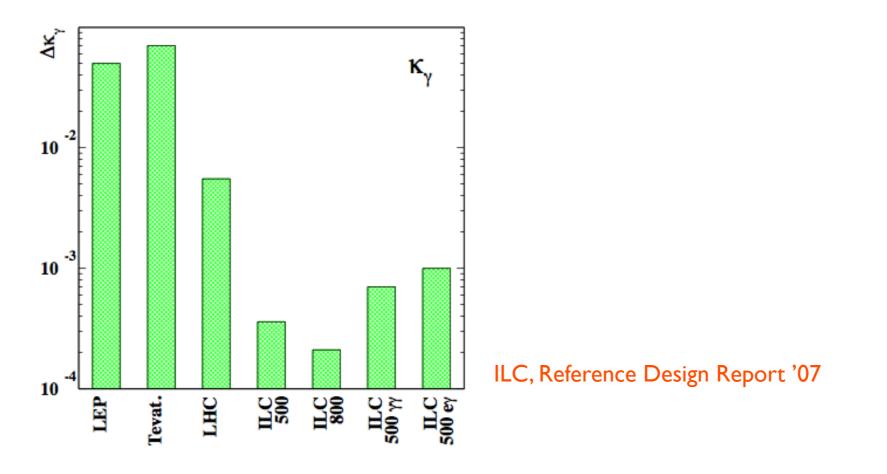
 \longrightarrow Tevatron experiments saw possible deviation from the SM

 \longrightarrow At LC significant improvement with respect to Tevatron and LHC

- Total width
- Strong coupling constant

Gauge boson self couplings

- Important test of the SM: precise measurement of pair and triple gauge boson production $e^+e^- \rightarrow W^+W^-$, ZZ, W^+W^-Z ,...
- The process of W^+W^- production allows sensitive measurement of triple gauge boson couplings
 - >>> New physics can lead to deviations from the SM values
 - >>> Possible to experimentally disentangle different types of couplings

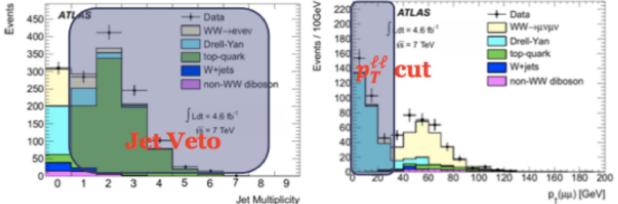

$$\begin{split} L_{\rm WWV} &= g_{\rm WWV}[\\ & \underline{i}g_{1}^{\rm V}V_{\mu} \left(W_{\nu}^{-}W_{\mu\nu}^{+} - W_{\mu\nu}^{-}W_{\nu}^{+}\right) + \underline{i}\kappa_{\rm V}W_{\mu}^{-}W_{\nu}^{+}V_{\mu\nu} + \underline{i}\frac{\lambda^{\rm V}}{m_{\rm W}^{2}}W_{\lambda\mu}^{-}W_{\mu\nu}^{+}V_{\nu\lambda} \\ & + g_{4}^{\rm V}W_{\mu}^{-}W_{\nu}^{+} \left(\partial_{\mu}V_{\nu} + \partial_{\nu}V_{\mu}\right) + g_{5}^{\rm V}\epsilon_{\mu\nu\lambda\rho} \left(W_{\mu}^{-}\partial_{\lambda}W_{\nu}^{+} - \partial_{\lambda}W_{\mu}^{-}W_{\nu}^{+}\right)V_{\rho} \\ & + \underline{i}\tilde{\kappa}^{\rm V}W_{\mu}^{-}W_{\nu}^{+}\tilde{V}_{\mu\nu} + \underline{i}\frac{\tilde{\lambda}^{\rm V}}{m_{\rm W}^{2}}W_{\lambda\mu}^{-}W_{\mu\nu}^{+}\tilde{V}_{\nu\lambda}]\,, \end{split}$$

In the SM:

$$g_1^{\gamma,Z} = \kappa^{\gamma,Z} = 1, \quad g_4^{\gamma,Z} = g_5^{\gamma,Z} = \tilde{\kappa}^{\gamma,Z} = 0 \quad \text{and} \quad \left(\lambda^{\gamma,Z} = \tilde{\lambda}^{\gamma,Z} = 0\right)$$

Gauge boson self couplings

- Important test of the SM: precise measurement of pair and triple gauge boson production $e^+e^- \rightarrow W^+W^-, ZZ, W^+W^-Z, ...$
- The process of W^+W^- production allows sensitive measurement of triple gauge boson couplings
 - \longrightarrow New physics can lead to deviations from the SM values
 - >>> Possible to experimentally disentangle different types of couplings



WW production at the LHC

Slide from M. Mangano, HCP 2012

WW Cross-sections ww cont.

Backgrounds

Jet-veto and other systematics of kinematical origin are greatly reduced in the $\sigma(8\text{TeV})/\sigma(7\text{TeV})$ ratio

Future greater statistics in $pp \rightarrow ZZ$ will allow to greatly reduce such systematics also for the predictions at fixed-energy

Results (CERN-PH-EP-2012-242, CMS PAS SMP-12-005, CMS PAS SMP-12-013)

	$\int L$ (fb ⁻¹)	$\sigma(pp \rightarrow WW) imes B$ (pb)	SM NLO	
ATLAS 7TeV	4.6	$51.9 \pm 2.0(stat.) \pm 3.9(syst.) \pm 2.0(lumi.)$	$44.7^{+2.1}_{-1.9}$	
CMS 7TeV	4.9	$52.4 \pm 2.0(stat.) \pm 4.5(syst.) \pm 1.2(lumi.)$	-	1.5-2σ off
CMS 8TeV	3.5	$69.9 \pm 2.8(stat.) \pm 5.6(syst.) \pm 3.1(lumi.)$	$57.3^{+2.4}_{-1.6}$	

□ Systematics (~8%)

– Jet Veto efficiency (major), lepton, $E_{T,Rel}^{miss}$, lumi

2012/11/14 Wednesday

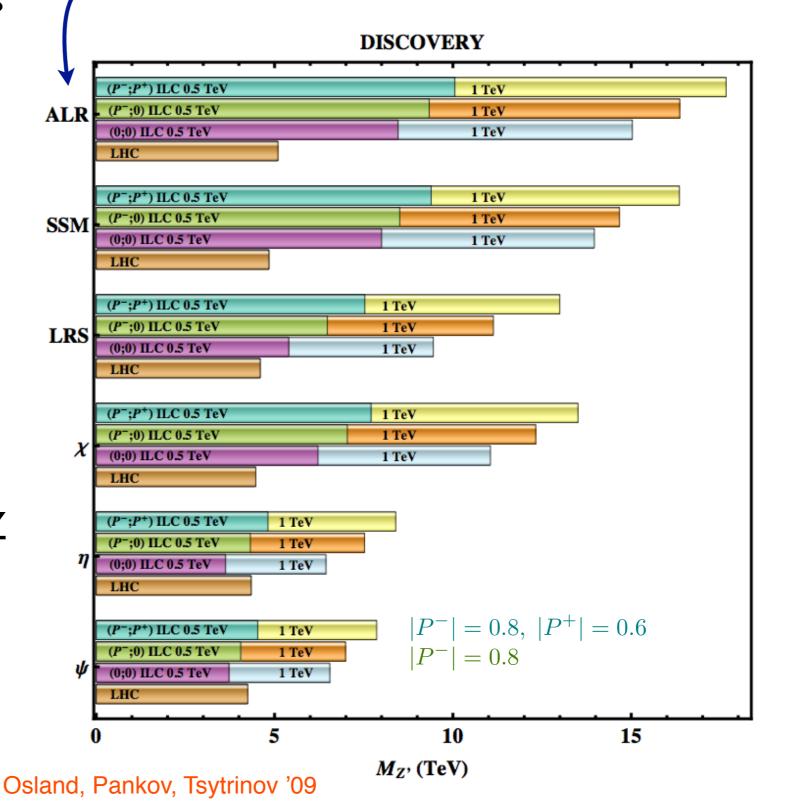
Y. WU @ HCP2012

A proposal for BSM interpretations of this discrepancy:

chargino production and leptonic decay

Feigl, Rzehak, Zeppenfeld, arXiv: 1205.346829

10


Extra gauge bosons

- Heavy neutral gauge bosons Z' are predicted in many extensions of the SM
- Lower mass limits
 - → EWPO
 - Direct searches at Tevatron and the LHC
- ILC has potential to see effect of heavy virtual Z' through interference with Z and γ exchange in

 $e^+e^- \to f\bar{f}$

 Possibility to discriminate between Z' models

Different Z' models

Effective weak mixing angle: status

$$\sin^2 \theta_{\text{eff}}^l = (1 - M_W^2 / M_Z^2) (1 + \Delta \kappa)$$

• Current most precise single measurements
•
$$A_{FB}^{b}(LEP) : \sin^{2} \theta_{eff}^{\ell \exp, LEP} = 0.23221 \pm 0.00029$$

• 3σ • $A_{LR}^{e}(SLD) : \sin^{2} \theta_{eff}^{\ell \exp, SLD} = 0.23098 \pm 0.00026$ • via left-right asymmetry of electrons
difference

- LEP (SLD) measurement prefers SM Higgs mass of 437 (32) GeV
- Precise theoretical calculation, current uncertainties:

 $\Delta \sin^2 \theta_{\text{eff}}^{l \text{SM, theo}} = 4.5 \times 10^{-5} \quad \Delta \sin^2 \theta_{\text{eff}}^{l \text{MSSM, theo}} = (5-7) \times 10^{-5}$

• ILC (with Giga-Z option) can significantly improve this measurement

Effective weak mixing angle: measurement

- At LC collider measured in $e^+e^- o \gamma, Z o l\bar{l}$ at the Z pole
- With polarized electron beams very precise measurement of the leftright asymmetry

$$A_{\mathrm{LR}}^{e} = \frac{1}{\mathcal{P}} \frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}} = \frac{2g_{V_{e}}g_{A_{e}}}{g_{V_{e}}^{2} + g_{A_{e}}^{2}}, \quad \frac{g_{V_{e}}}{g_{A_{e}}} = 1 - 4\sin^{2}\theta_{\mathrm{eff}}^{l}$$

Beam polarization

- With 10^9 Z bosons, electron polarization 80%, no positron polarization: $\Delta \sin^2 \theta_{\rm eff}^l \sim 5 \times 10^{-5}$
- With additional positron polarization further improvement
- Overall ILC prediction:

 $\Delta \sin^2 \theta_{\rm eff}^l \lesssim 1.3 \times 10^{-5}$

- More than factor 10 improvement compared to LEP/SLD
- Also A^b_{FB} can be measured at the LC

W boson mass

- Experimental precision significantly improved by Tevatron measurements
- World average

$$M_W^{\rm exp} = 80.385 \pm 0.015 {\rm ~GeV}$$

Tevatron Electroweak Working Group, April '12

- Improvement at the LHC possible but very challenging
- Significant improvement of M_W possible at a linear collider
- Three uncorrelated methods to measure M_W at the ILC

 \searrow Each has a predicted experimental precision of $\,\Delta M_W \lesssim 5\,\,{
m MeV}$

$\Delta M_W ~[{ m MeV}]$	LEP2	ILC	ILC	Rur
$\sqrt{s} \; [\text{GeV}]$	161	161	161	
$\mathcal{L}~[\mathrm{fb}^{-1}]$	0.040	100	480	
$P(e^{-})$ [%]	0	90	90	
$P(e^+)$ [%]	0	60	60	
total	210	4.1-4.5	2.3-2.9	$\mathbf{)}$

Run at WW threshold

W boson mass

- Experimental precision significantly improved by Tevatron measurements
- World average

$$M_W^{\rm exp} = 80.385 \pm 0.015 {\rm ~GeV}$$

Tevatron Electroweak Working Group, April '12

- Improvement at the LHC possible but very challenging
- Significant improvement of $\,M_W$ possible at a linear collider
- Three uncorrelated methods to measure M_W at the ILC

 ΔM_W [MeV]

 \searrow Each has a predicted experimental precision of $\,\Delta M_W \lesssim 5\,\,{
m MeV}$

LEP2 | ILC | ILC | ILC

Kinematic reconstruction using semi-leptonic channels

Direct reconstruction of the hadronic mass

$\Delta M_W \; [{ m MeV}]$	ILC	ILC	ILC	ILC
$\sqrt{s} \; [\text{GeV}]$	250	350	500	1000
$\mathcal{L} \; [ext{fb}^{-1}]$	500	350	1000	2000
$P(e^{-})$ [%]	80	80	80	80
$P(e^+)$ [%]	30	30	30	30
total systematics	3.4	3.4	3.5	3.9
statistical	1.5	1.5	1.0	0.5
total	3.7	3.7	3.6	3.9

Run at higher energies $\sqrt{s}=250\ldots 500~{
m GeV}$

		120	120	120
$\sqrt{s} \; [\text{GeV}]$	172-209	250	350	500
$\mathcal{L} \; [\mathrm{fb}^{-1}]$	3.0	500	350	1000
$P(e^-)$ [%]	0	80	80	80
$P(e^+)$ [%]	0	30	30	30
total systematics	21	2.4	2.9	3.5
statistical	30	1.5	2.1	1.8
total	36	2.8	3.6	3.9
	1	1	I	

Wilson at al, Snowmass Study '13

Lisa Zeune | Precision Physics (MW, EW, top) | JCL | 16

Theoretical determination of the W boson

Comparison of muon decay in SM and Fermi model gives:

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{e^2}{8\left(1 - \frac{M_W^2}{M_Z^2}\right)M_W^2} \left(1 + \Delta r(M_W, M_Z, m_t, \dots, X)\right) \frac{V_{\mu}}{\nu_{\mu}}$$

- Model dependent prediction for M_W
- Very precise SM calculation (full 2-loop, leading 3- and 4-loop contributions)
- New 1-loop results in MSSM (with complex parameters) and NMSSM
 + inclusion of all available higher-order corrections

$$\Delta r^{(\mathrm{N})\mathrm{MSSM}} = \Delta r^{\mathrm{SM}} + \Delta r^{\mathrm{SUSY}}$$

 $\mu^{-} \qquad \text{model} \\ \text{dependent } X \\ \psi_{e}$

→ Most precise W boson mass prediction in MSSM and NMSSM Heinemeyer, Hollik, Weiglein, LZ '13

Theory uncertainties

• Current parametric uncertainties

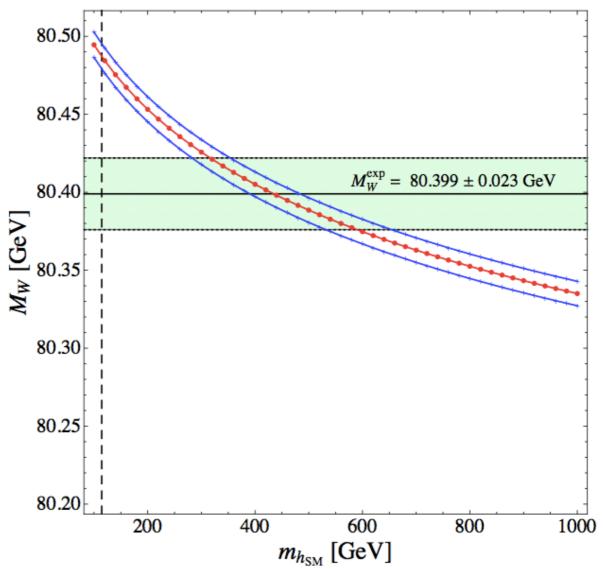
Freitas at al, Snowmass Study '13

	$\Delta m_t = 0.9 { m GeV}$	$\Delta(\Delta \alpha_{ m had}^{(5)}) = 1.38(1.0) \times 10^{-4}$	$\Delta M_Z = 2.1~{\rm MeV}$
ΔM_W [MeV]	5.4	2.5(1.8)	2.6
$\Delta \sin^2 \theta_{ m eff}^{\ell}[10^{-5}]$	2.8	4.8(3.5)	1.5

Improved measurements

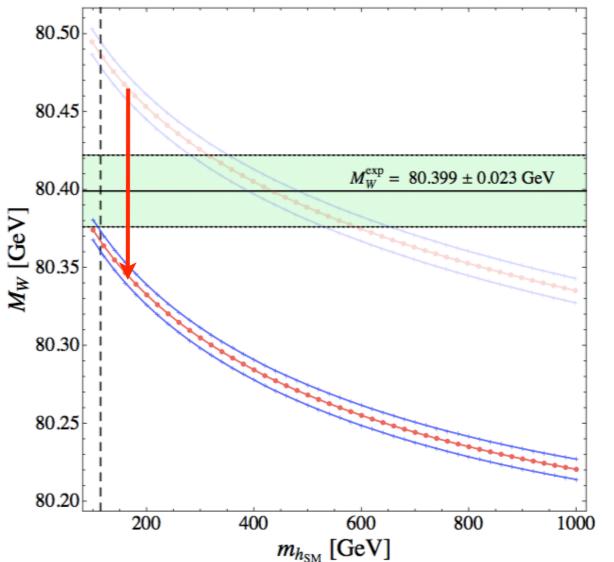
	$\Delta m_t = 0.5(0.1)~{ m GeV}$	$\begin{array}{l} \Delta(\Delta\alpha^{(5)}_{\rm had}) \ = \\ 5\times10^{-5} \end{array}$	$\Delta M_Z = 2.1~{ m MeV}$
ΔM_W [MeV]	3.0 (0.6)	1.0	2.6
$\Delta \sin^2 heta_{ m eff}^\ell [10^{-5}]$	1.6(0.3)	1.8	1.5

• Uncertainties from missing higher order corrections (current status)


SM: 4 MeV M.Awramik, M. Czakon, A. Freitas and G. Weiglein '03

MSSM: 4 - 9 MeV J. Haestier, S. Heinemeyer, D. Stöckinger, G. Weiglein '05

W boson mass in the SM


- Tree level prediction differs from SM by more than $30\,\sigma$
- Including all 1-loop contributions:

W boson mass in the SM

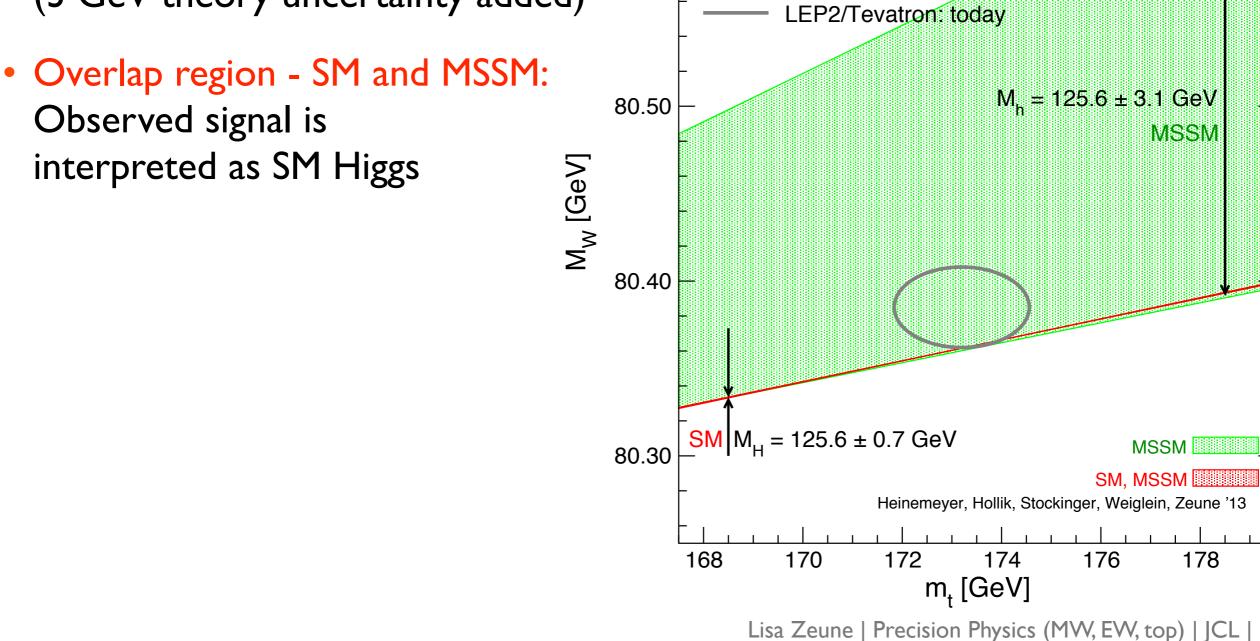
- Tree level prediction differs from SM by more than $30\,\sigma$
- Including all higher order corrections:
- Corrections beyond I-loop cause a downward shift of more than 100 MeV
 - crucial to include higher order corrections

 M_W^{\exp}

Current world average:

 $= 80.385 \pm 0.015 ~{\rm GeV}$

SM result

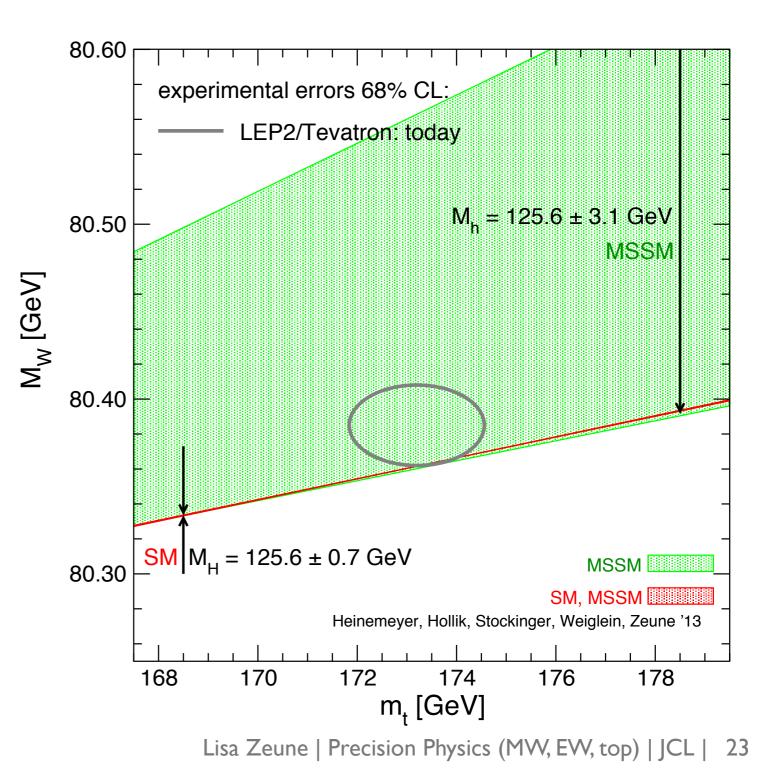

 $M_W^{\rm SM}(m_t = 173.2 \text{ GeV}, M_H^{\rm SM} = 125.64 \text{ GeV}) = 80.361 \text{ GeV}$

- Deviation from the measurement is $\,\sim 1.5\,\sigma$

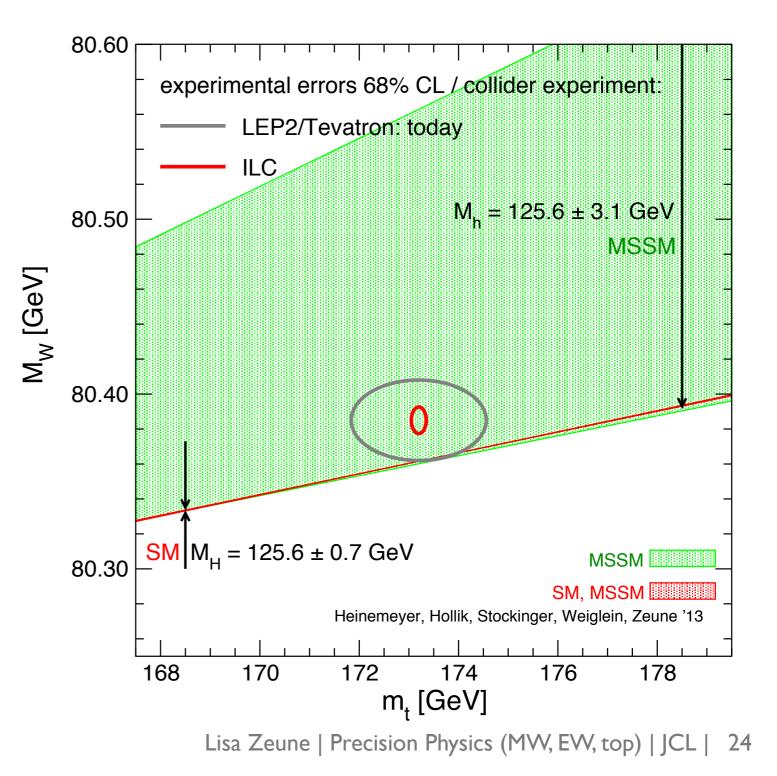
Obtained from parameter scan:

• Allowed MSSM region:

Discovered Higgs is interpreted as light CP-even MSSM Higgs (3 GeV theory uncertainty added)

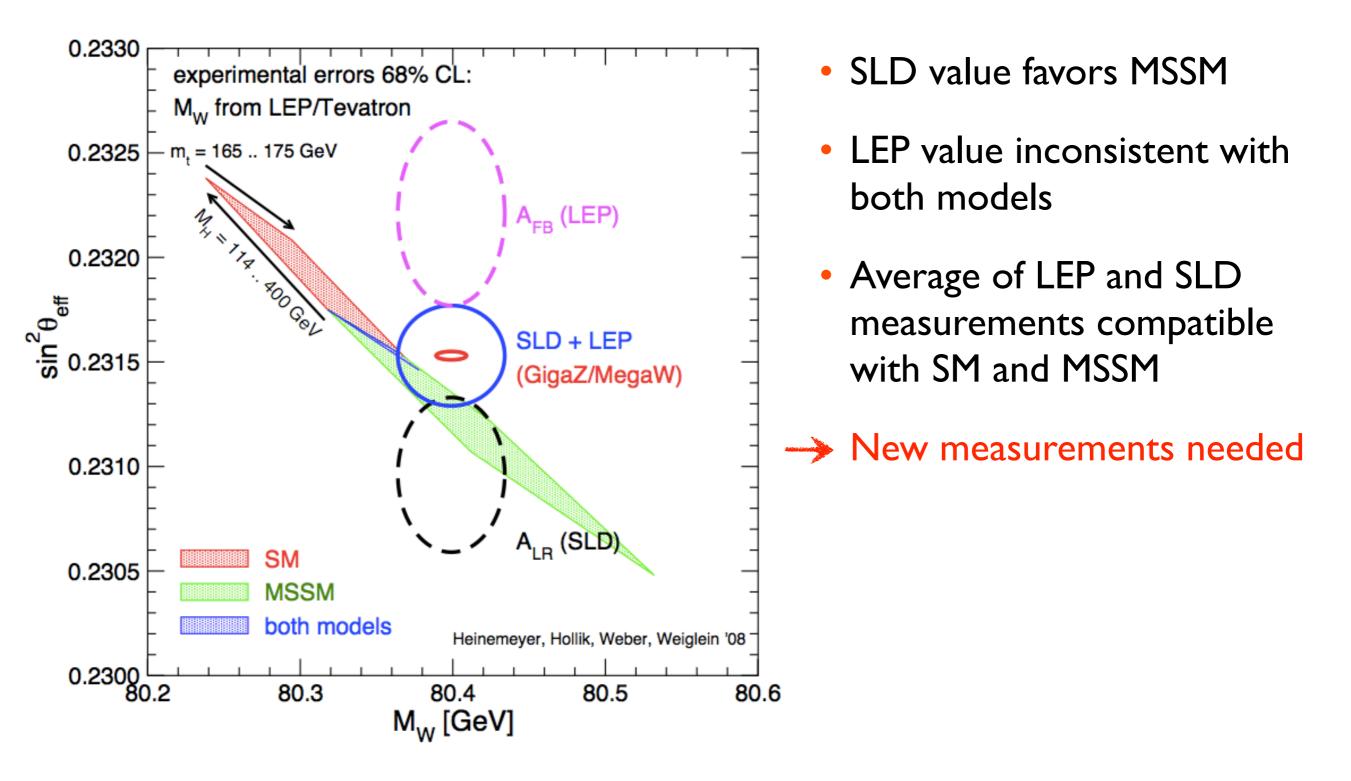

80.60

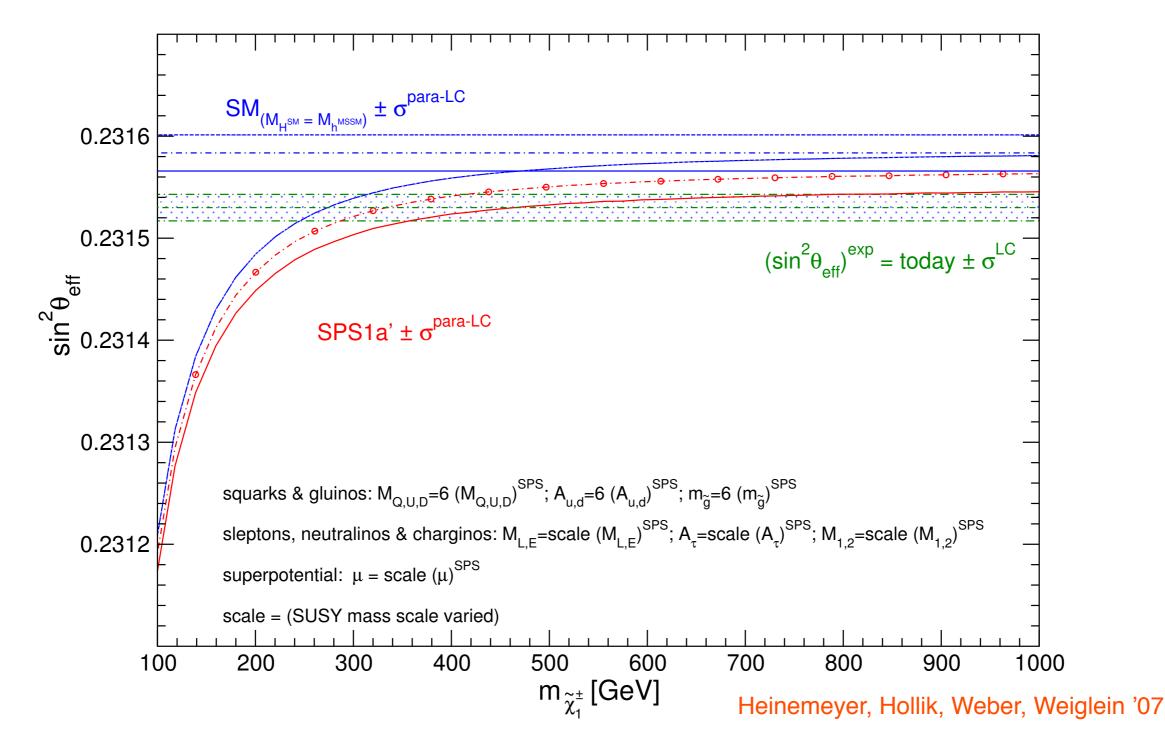
experimental errors 68% CL;


21

- Largest SUSY contributions from stops and sbottoms (large splitting required)
- Sizable contributions also from 80.60 light sleptons (~60 MeV) experimental errors 68% CL; and charginos and LEP2/Tevatron: today neutralinos (~20 MeV) $M_{\rm h} = 125.6 \pm 3.1 \, {\rm GeV}$ 80.50 MSSM M_w [GeV] 80.50 r experimental errors 68% CL LEP2/Tevatron: today 80.45 80.40 M_w [GeV] 90 100 100 80.40 150 150 **SM** $M_{\rm H} = 125.6 \pm 0.7 \, \text{GeV}$ 200 MSSM 80.30 500 SM, MSSM Heinemeyer, Hollik, Stockinger, Weiglein, Zeune '13 80.35 Heinemeyer, Hollik, Stockinger, Weiglein, Zeune '13 178 168 170 172 178 171 172 173 174 175 174 176 176 177 m, [GeV] m, [GeV] Lisa Zeune | Precision Physics (MW, EW, top) | JCL | 22

- Largest SUSY contributions from stops and sbottoms (large splitting required)
- Sizable contributions also from light sleptons (~60 MeV) and charginos and neutralinos (~20 MeV)
- Slight preference for non zero SUSY contribution
- With current level of precision no clear conclusion can be drawn


- Largest SUSY contributions from stops and sbottoms (large splitting required)
- Sizable contributions also from light sleptons (~60 MeV) and charginos and neutralinos (~20 MeV)
- Slight preference for non zero SUSY contribution
- With current level of precision no clear conclusion can be drawn
- With LC precision it might be possible to discriminate between SM and the MSSM


- Precise measurement of the W boson mass restricts light sbottom and heavy stop mass ranges to small intervals
- Precision observable provide constraints on undetected particles

SM and MSSM predictions for the W boson mass and the effective mixing angle

High precision measurement of $\sin^2 heta_{ ext{eff}}^{ ext{l}}$

 Sensitivity to SUSY scale in a scenario where no SUSY particles are observed at the LHC

Lisa Zeune | Precision Physics (MW, EW, top) | JCL | 27

Conclusions

- <u>Top physics at the linear collider</u>
- Qualitative and quantitative improvement of top mass measurement
- Rich program: precise measurements of top couplings, asymmetries ...
- Electroweak physics at the linear collider
- Precise measurement of processes $e^+e^- \rightarrow W^+W^-, ZZ, f\bar{f},$

Sensitive to small deviations from SM predictions

- Precise measurement of W boson mass
- Giga-Z: High precision measurement of Z observables

 \searrow New measurement of $\sin \theta_{\rm eff}^l$

 Sensitivity to new physics effects drastically improves with ILC precision on EWPO and the top mass

Sensitive test of any TeV scale new physics model

W boson mass at the LC

Kinematic reconstruction using semi-leptonic

		•		•	
channels	$\Delta M_W ~[{ m MeV}]$	LEP2	ILC	ILC	ILC
	$\sqrt{s} \; [{ m GeV}]$	172-209	250	350	500
	$\mathcal{L} \; [ext{fb}^{-1}]$	3.0	500	350	1000
	$P(e^-)$ [%]	0	80	80	80
	$P(e^+)$ [%]	0	30	30	30
	beam energy	9	0.8	1.1	1.6
	luminosity spectrum	N/A	1.0	1.4	2.0
	hadronization	13	1.3	1.3	1.3
	radiative corrections	8	1.2	1.5	1.8
	detector effects	10	1.0	1.0	1.0
	other systematics	3	0.3	0.3	0.3
	total systematics	21	2.4	2.9	3.5
	statistical	30	1.5	2.1	1.8
	total	36	2.8	3.6	3.9

Direct reconstruction of the hadronic mass

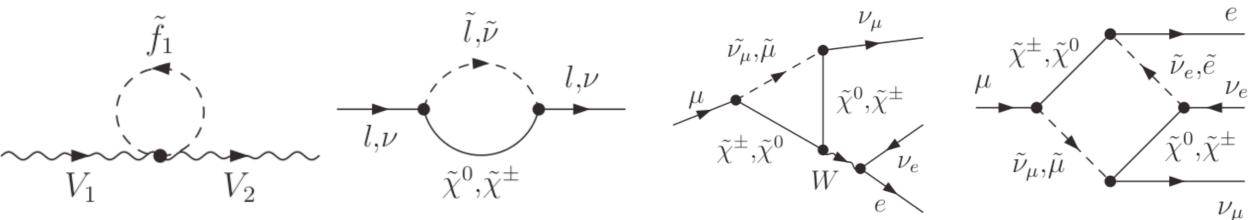
$\Delta M_W [{ m MeV}]$	ILC	ILC	ILC	ILC
$\sqrt{s} \; [\text{GeV}]$	250	350	500	1000
$\mathcal{L} \; [\mathrm{fb}^{-1}]$	500	350	1000	2000
$P(e^{-})$ [%]	80	80	80	80
$P(e^+)$ [%]	30	30	30	30
jet energy scale	3.0	3.0	3.0	3.0
hadronization	1.5	1.5	1.5	1.5
pileup	0.5	0.7	1.0	2.0
total systematics	3.4	3.4	3.5	3.9
statistical	1.5	1.5	1.0	0.5
total	3.7	3.7	3.6	3.9

$\Delta M_W \; [{ m MeV}]$	LEP2	ILC	ILC	e^+e^-	TLEP
\sqrt{s} [GeV]	161	161	161	161	161
$\mathcal{L} \; [\mathrm{fb}^{-1}]$	0.040	100	480	600	3000×4
$P(e^{-})$ [%]	0	90	90	0	0
$P(e^+)$ [%]	0	60	60	0	0
systematics	70			?	< 0.5
statistics	200			2.3?	0.5
experimental total	210	3.9	1.9	>2.3	< 0.7
beam energy	13	0.8-2.0	0.8-2.0	0.8-2.0	0.1
radiative corrections	-	1.0	1.0	1.0	1.0
total	210	4.1-4.5	2.3-2.9	>2.6-3.2	< 1.2

WW threshold

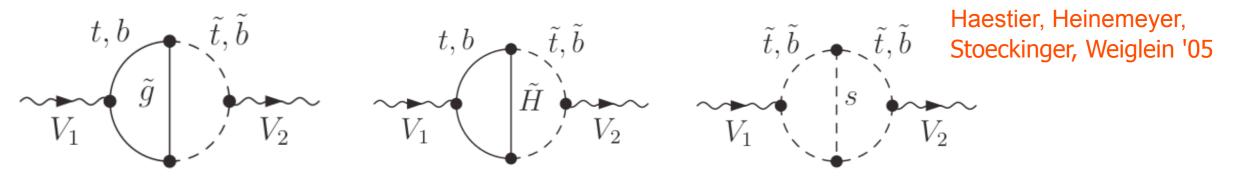
SM model contributions to Δr

$$\Delta r^{\rm SM} = \Delta r^{(\alpha)} + \Delta r^{(\alpha\alpha_s)} + \Delta r^{(\alpha\alpha_s^2)} + \Delta r^{(\alpha^2)}_{\rm ferm} + \Delta r^{(\alpha^2)}_{\rm hos} + \Delta r^{(G^2_{\mu}\alpha_s m_t^4)} + \Delta r^{(G^3_{\mu}m_t^6)} + \Delta r^{(G_{\mu}m_t^2\alpha_s^3)}$$


- $\Delta r^{(\alpha)}$: I-loop contribution
- $\Delta r^{(\alpha\alpha_s)} + \Delta r^{(\alpha\alpha_s^2)}$: 2- and 3-loop QCD corrections Chetyrkin, Kuhn, Steinhauser '95, Djouadi, Verzegnassi '88, ... • $\Delta r^{(\alpha^2)}_{\text{ferm}} + \Delta r^{(\alpha^2)}_{\text{bos}}$: fermionic and bosonic electroweak 2-loop corrections (fitting formula) Awramik, Czakon, Freitas '06, Awramik, Czakon, Freitas, Weiglein '03 • $\Delta r^{(G_{\mu}^2\alpha_sm_t^4)} + \Delta r^{(G_{\mu}^3m_t^6)}$: 3-loop top quark contribution Faisst, Kuhn, Seidensticker, Veretin '03 • $\Delta r^{(G_{\mu}m_t^2\alpha_s^3)}$: 4-loop QCD correction Boughezal '06
- QCD corrections enter only at 2-loop level

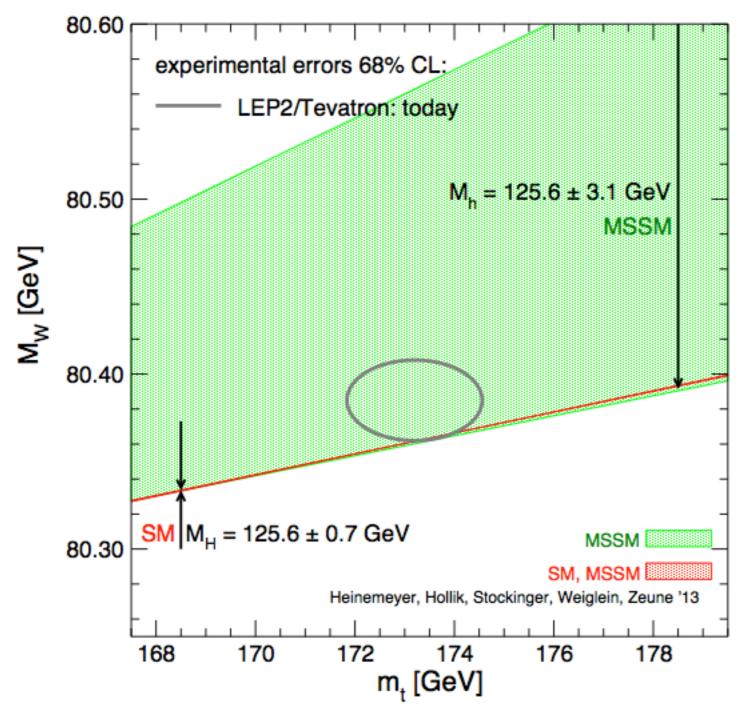
Large corrections beyond 1-loop level

0000000


SUSY contributions to Δr

 I-loop contributions from MSSM Higgs bosons, sfermions, charginos and neutralinos

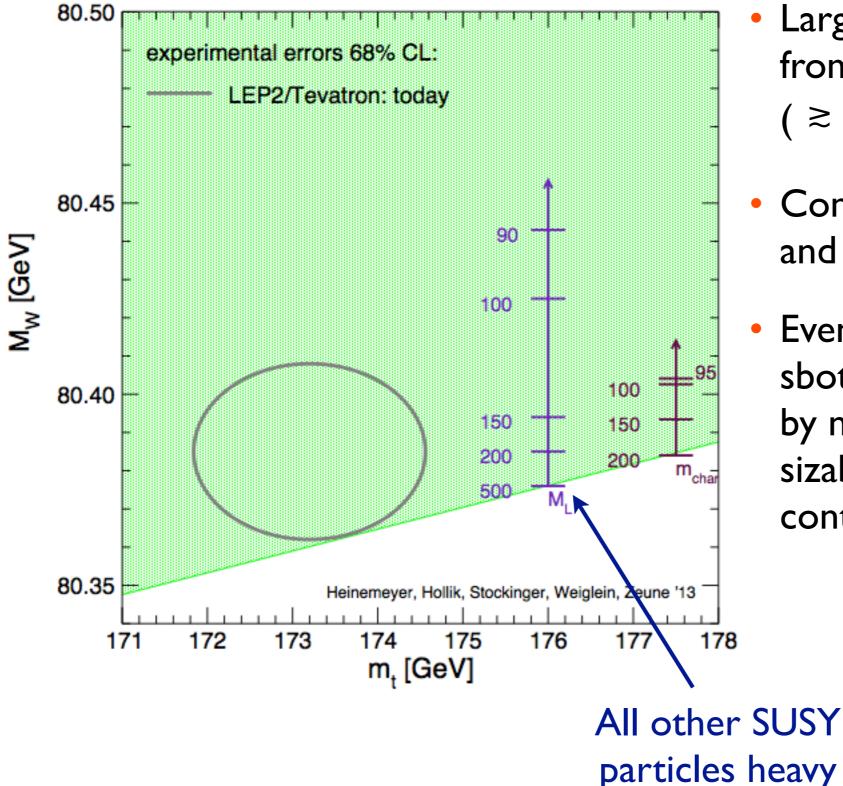
Supersymmetric 2-loop contributions


- SUSY QCD corrections: (S)quark loops with gluon and gluino exchange
- Yukawa contributions: (S)quark loops with Higgs and Higgsino exchange

• Leading reducible 2-loop corrections Consoli, Hollik, Jegenlehner '89

Djouadi et. al '98

Stop and sbottom contribution


$$\Delta r^{(\alpha)} = \Delta \alpha - \frac{c_w^2}{s_w^2} \Delta \rho + \Delta r_{\rm rem}$$

Largest SUSY contribution:
 Stop / sbottom contribution to

$$\Delta \rho = \frac{\Sigma_T^{ZZ}(0)}{M_Z^2} - \frac{\Sigma_T^{WW}(0)}{M_W^2}$$

- Sensitive to the mass splitting between stops and sbottoms
- Very large values for ${\cal M}_W$ possible for
 - Large mixing between stops and sbottoms
 - Either \tilde{t}_1 or \tilde{b}_1 is very light (challenged by LHC limits)

Slepton, chargino and neutalino contribution

- Large contribution possible from light sleptons
 (≥ 60 MeV)
- Contribution from charginos and neutralinos $\approx 20 \text{ MeV}$
- Even if light stops and sbottoms would get excluded by negative LHC searches, sizable MSSM M_W contributions are still possible