CERN workshop
The top-charm frontier at the LHC

CERN 14 January 2014

Yossi Nir (Weizmann Institute of Science)

Thanks to...

- Shikma Bressler
- Avital Dery
- Aielet Efrati
- Yuval Grossman
- Gudrun Hiller
- Yonit Hochberg
- Gilad Perez
- Yotam Soreq

Dery, Efrati, Hiller, Hochberg, YN, JHEP1308(2013)006

Dery, Efrati, Hochberg, YN, JHEP1305(2013)039

Hochberg, YN, PRL108(2012)261601

Blum, Hochberg, YN, JHEP1110(2011)124

Plan of Talk

- 1. Introduction
 The flavorful Higgs
- 2. 1 is not large statistics From V_q to U_ℓ
- 3. Top-Charm connection? From A_{FB}^t to ΔA_{CP}^D
- 4. Some concluding comments
 Why top? Why charm? Why top&charm?

Introduction

The flavorful Higgs

Questions for the LHC

- What is the mechanism of electroweak symmetry breaking?
- What separates the electroweak scale from the Planck scale?
- What happened at the electroweak phase transition $(10^{-11} \text{ second after the big bang})$?
- What are the dark matter particles?
- How was the baryon asymmetry generated?
- What is the solution of the flavor puzzles?

The flavor puzzles

- The SM flavor puzzle:
 Why is there smallness and hierarchy in the charged fermion flavor parameters?
- The SM flavor puzzle extended:
 Why is the neutrino flavor structure different?
- The NP flavor puzzle:

 If there is TeV-scale NP, why doesn't it affect FCNC?

Can we make progress?

- NP that couples to quarks/leptons \Longrightarrow New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even anarchical
- The NP flavor puzzle:
 With ATLAS/CMS we will surely understand how it is solved
- The SM flavor puzzle:
 Progress possible if structure not MFV but related to SM

Can we make progress?

- NP that couples to quarks/leptons \Longrightarrow New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even anarchical
- The NP flavor puzzle:
 With ATLAS/CMS we will surely understand how it is solved
- The SM flavor puzzle:
 Progress possible if structure not MFV but related to SM
- $h \implies$ The "NP" is already here! $Y_{\bar{f}_i f_i}$ are new flavor parameters that can be measured

The flavorful h

Higgs, Top and Charm

- Experimentally:
 - Measure $\sigma(pp \to t\bar{t}h) \Longrightarrow Y_{tt}$
 - Measure $\sigma(pp \to h) \times \text{BR}(h \to c\bar{c}) \Longrightarrow Y_{cc}$
 - Measure BR $(t \to hc) \Longrightarrow Y_{tc}$
- Theoretically:

Model	$rac{Y_{tt}}{Y_{tt}^{ ext{SM}}}$	$\frac{Y_{cc}/Y_{tt}}{m_c/m_t}$	Y_{ct}/Y_{tt}
SM	1	1	0
2HDM-NFC	c_{lpha}/s_{eta}	1	0
2HDM-MFV	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(Y_b^2 V_{cb})$
1HDM-FN	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(V_{cb}vm_t/\Lambda^2)$

1 is not large statistics

From quark to lepton mixing

Quark mixing

• The CKM matrix a-la BABAR/BELLE: Ceccucci et al, PDG(2012)

$$V_q = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.00065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.22520 \pm 0.00065 & 0.97344 \pm 0.00016 & (4.12^{+0.11}_{-0.05}) \times 10^{-2} \\ (8.67 \pm 0.30) \times 10^{-3} & (4.04^{+0.11}_{-0.05}) \times 10^{-2} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$$

t+c 10/24

Quark mixing

• The CKM matrix a-la BABAR/BELLE: Ceccucci et al, PDG(2012)

$$V_q = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.00065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.22520 \pm 0.00065 & 0.97344 \pm 0.00016 & (4.12^{+0.11}_{-0.05}) \times 10^{-2} \\ (8.67 \pm 0.30) \times 10^{-3} & (4.04^{+0.11}_{-0.05}) \times 10^{-2} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$$

• The CKM matrix a-la ATLAS/CMS:

$$V_q = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

t+c 10/24

From quark mixing to lepton mixing

• Quark mixing a-la theorists, qualitatively:

$$V_q = egin{pmatrix} 1 & ext{small} & ext{small} \\ ext{small} & 1 & ext{small} \\ ext{small} & ext{small} & 1 \end{pmatrix}$$

t+c 11/24

From quark mixing to lepton mixing

• Quark mixing a-la theorists, qualitatively:

$$V_q = egin{pmatrix} 1 & ext{small} & ext{small} \ ext{small} & 1 & ext{small} \ ext{small} & ext{small} & 1 \end{pmatrix}$$

• The theoretical prejudice for lepton mixing:

$$U_{\ell} = egin{pmatrix} 1 & ext{small} & ext{small} \ ext{small} & 1 & ext{small} \ ext{small} & ext{small} & 1 \end{pmatrix}$$

t+c 11/24

Lepton mixing

• The data: Gonzalez-Garcia, PoS ICHEP2012(2013)005

$$|U|_{3\sigma} = \begin{pmatrix} 0.79 - 0.85 & 0.51 - 0.59 & 0.13 - 0.18 \\ 0.20 - 0.54 & 0.42 - 0.73 & 0.58 - 0.81 \\ 0.21 - 0.55 & 0.41 - 0.73 & 0.57 - 0.80 \end{pmatrix}$$

12/24

Lepton mixing

• The data: Gonzalez-Garcia, PoS ICHEP2012(2013)005

$$|U|_{3\sigma} = \begin{pmatrix} 0.79 - 0.85 & 0.51 - 0.59 & 0.13 - 0.18 \\ 0.20 - 0.54 & 0.42 - 0.73 & 0.58 - 0.81 \\ 0.21 - 0.55 & 0.41 - 0.73 & 0.57 - 0.80 \end{pmatrix}$$

• Tribimaximal-ists:

$$|U|_{\text{TBM}} = \begin{pmatrix} 0.82 & 0.58 & 0\\ 0.41 & 0.58 & 0.71\\ 0.41 & 0.58 & 0.71 \end{pmatrix}$$

• Anarch-ists:

$$|U|_{\text{anarchy}} = \begin{pmatrix} \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \end{pmatrix}$$

t+c 12/24

Summary I

- The attempt to guess from V_q the structure of U_ℓ has failed (1 is not large statistics)
- The attempt to guess from $M_{U,D,E}$ the flavor structure of NP might fail

(3 is still not large statistics)

t+c 13/24

Summary I

- The attempt to guess from V_q the structure of U_ℓ has failed (1 is not large statistics)
- The attempt to guess from $M_{U,D,E}$ the flavor structure of NP might fail (3 is still not large statistics)
- Be suspicious of theoretical prejudices (MFV is not an experimental fact)
- Measure as much as you can in $Y_{U,D,E}$ (In the context of this workshop: Y_{tt} , Y_{cc} , Y_{ct} ...)

t+c 13/24

Top-Charm connection?

From A_{FB}^t to ΔA_{CP}^D

t+c 14/24

$A_{\rm FB}^t$ and scalar mediation

- $A_{\rm FB}^t({\rm CDF} + {\rm D0}) = 0.18 \pm 0.04$
- $A_{\rm FB}^t({\rm SM}) = 0.09 \pm 0.01$
- Suggestive of a new boson-mediated tree-level $u\bar{u} \to t\bar{t}$
- Focus on $\Phi(1,2)_{-1/2}$ with $m \sim 130$ GeV and $\lambda_{\phi ut} \sim 1$; $G_0 \equiv 4|\lambda|^2/m_{\phi}^2 = (10-30)G_F/\sqrt{2}$
- Note: The CKM misalignment \Longrightarrow Flavor changing couplings are unavoidable

t+c 15/24

$A_{\rm FB}^t$ and flavor constraints

- $A_{\rm FB}^t A_{\rm FB}^t({\rm SM}) \sim 0.1 \implies \lambda_{\phi^0 \overline{t}u} \sim 1$:
 - $-\overline{t_L}u_R$ or $\overline{t_R}u_L$?
 - Avoid FC couplings in the up (ϕ^0 -mediated) or down (ϕ^- -mediated) sector?

t+c 16/24

A_{FB}^{t} and flavor constraints

- $A_{\rm FB}^t A_{\rm FB}^t({\rm SM}) \sim 0.1 \implies \lambda_{\phi^0 \overline{t}u} \sim 1$:
 - $-\overline{t_L}u_R$ or $\overline{t_R}u_L$?
 - Avoid FC couplings in the up (ϕ^0 -mediated) or down (ϕ^- -mediated) sector?
- Constraints from Δm_K , Δm_D , $BR(\overline{B^0} \to \pi^+ K^-)$ dictate:
 - $-\overline{t_L}u_R$
 - Avoid FC couplings in the down sector
- The only (flavor-) viable possibility:

$$\lambda \left[\overline{b_L} u_R \phi^- + \left(V_{tb} \overline{t_L} + V_{cb} \overline{c_L} + V_{ub} \overline{u_L} \right) u_R \phi^0 \right]$$

16/24

Introduction to ΔA_{CP}^D

- $\Delta A_{\rm CP}^D({\rm EXP}) = (-3.3 \pm 1.2) \times 10^{-3}$
- SM: $\Delta A_{\text{CP}}^D(\text{SM}) = 1.2 \times 10^{-4} \frac{|P/T| \sin \delta}{0.1}$
- Three logical possibilities:
 - $-\Delta A_{\rm CP}^D({\rm EXP})$ will go down
 - Very strong penguin enhancement
 - New Physics

t+c 17/24

$$A_{\mathrm{FB}}^t \Rightarrow \Delta A_{\mathrm{CP}}^D$$

Consider ϕ :

- t-channel tree-level exchange of ϕ^0 generates $\frac{4|\lambda|^2}{m_{\phi}^2} V_{ub} V_{cb}^* (\overline{u_R} c_L) (\overline{u_L} u_R)$
- Predicts $\Delta A_{\text{CP}}^{\phi} = 2\sqrt{2}(G_0/G_F)I_{\text{CKM}}I_{\text{QCD}} \sim (0.02 0.07)I_{\text{QCD}}$ $-G_0 \equiv \frac{4|\lambda|^2}{m_{\phi}^2} = (10 - 30) \times \frac{G_F}{\sqrt{2}}$ $-I_{\text{CKM}} \equiv 2\mathcal{I}m \left(\frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*}\right) \sim 0.001$
- Guess $I_{\rm QCD} \sim 0.5 f_D/m_D \Longrightarrow |\Delta A_{\rm CP}^{\phi}| \sim 0.003$
- Interesting... but 4σ away from atomic parity violation

Summary II

- The model is radically different from MFV, yet not excluded by flavor
- Are we too much "committed" to MFV?

t+c 19/24

Summary II

- The model is radically different from MFV, yet not excluded by flavor
- Are we too much "committed" to MFV?
- $A_{\rm FB}^t$: scalar-mediated mechanisms involve flavor non-universal couplings in the up sector
- ΔA_{CP} : involves flavor non-universal couplings in the up sector
- The two observables, if BSM, might be related
- Our model provides a specific example; Are there any others?

t+c 19/24

Concluding Comments

Why top? Why charm? Why top&charm?

t+c 20/24

Concluding comments

Why top?

- The main source of the fine-tuning problem; 'Top-partners' likely to modify top couplings
- In some models drives EWSB
- Still much to learn about FCNC top decays; $t \to qZ, t \to q\gamma, t \to qg, t \to qh$
- At the LHC: Large statistics, 'easy' to identify, rich phenomenology
- Affects Higgs phenomenology in a variety of ways; $gg \to h, h \to \gamma\gamma, h \to gg, pp \to t\bar{t}h$

21/24

Concluding comments

Why charm?

- Flavor in the up sector much less explored
- $\Delta A_{\rm CP}$ intriguing
- Until now the charm is elusive:
 Unlike t (and b) not an easy-to-identify final state
 Unlike u (and d) not a copious initial state
- The news: charm tagging is possible: a new arena for flavor physics!

t+c 22/24

Why top&charm?

- In most solutions of the fine-tuning problem: Not just top-partners, but all fermion-partners
- The top-partners mix with all states with the same color and EM charge:

 Expect top-partner charm-partner mixing
- May lead to $\mathcal{O}(1)$ modifications in top-partner physics
- In MFV and, more generally, U(2) models: Charm and up \sim flavor-doublet \Longrightarrow Small $\tilde{t} - \tilde{c}$ mixing
- But... in FN and, more generally, U(1) models Charm and up are different \Longrightarrow Large $\tilde{t} \tilde{c}$ mixing possible

t+c 23/24

Concluding comments

Conclusions

- Higgs physics a new arena for flavor physics Third generation couplings: Y_t , Y_b , Y_τ Second generation couplings: Y_c , Y_μ FC couplings: Y_{ct} , $Y_{\mu\tau}$
- Don't assume MFV test it! We may be surprised...
- Naturalness seems elusive maybe it is just somewhat charmed
- Charm tagging an opportunity

t+c 24/24