Charm production at high ET

The top-charm frontier at the LHC

CERN TH, January 14-17 2014

Michelangelo L. Mangano

TH Unit, Physics Department, CERN <u>michelangelo.mangano@cern.ch</u>

Heavy quark multiplicities in gluon jets, Mangano, Nason, PLB285 (1992) 160-166

$$a = -\frac{1}{4} \left[1 + \frac{2C_A}{3\pi b} \left(1 - \frac{C_F}{C_A} \right) \right]$$
$$b = \frac{11C_A - 2N_F}{12\pi}.$$

$$\rho = \frac{1}{6\pi} \int_{4m^2}^{Q^2} \frac{\mathrm{d}K^2}{K^2} \alpha_{\rm s}(K^2) \left(1 + \frac{2m^2}{K^2}\right) \sqrt{1 - \frac{4m^2}{K^2}} \times n_{\rm g}(Q^2, K^2) , \qquad (1.1)$$

$$n_{g}(Q^{2}, K^{2}) = \left(\frac{\log(Q^{2}/\Lambda^{2})}{\log(K^{2}/\Lambda^{2})}\right)^{a}$$
$$\times \cosh\left(\sqrt{\frac{2C_{A}}{\pi b}}\left(\sqrt{\log\frac{Q^{2}}{\Lambda^{2}}} - \sqrt{\log\frac{K^{2}}{\Lambda^{2}}}\right)\right)$$

ALEPH, arXiv:hep-ex/9909032

ATLAS, Phys. Rev. D85 (2012) 052005

CDF, Phys.Rev.Lett. 91 (2003) 241804

ALICE, JHEP 1201 (2012) 128

FONLL, Cacciari et al, JHEP 05 (1998) 007, JHEP 10 (2012) 137

GM-VFNS, Kniehl et al, Phys. Rev. D71 (2005) 014018, EPJC72 (2012) 2082

ALICE, JHEP 1207 (2012) 191

2.76 TeV data vs rescaling of 7 TeV data using FONLL 7 TeV/2.76 TeV ratio

LHCb, Nucl.Phys. B871 (2013) 1

D0 results

CDF results

PHYSICAL REVIEW LETTERS

week ending 26 JULY 2013

Similar trend in cdf and D0: an excess in both c and b.

However, if we look at the ratios c/b:

Are the CDF and D0 results consistent with each other?

Thus yc production at large pt at the LHC is more sensitive to the charm PDF than at the Tevatron, where gluon splitting has a major role at large pt.

