

Possibility of bringing TRIµP to HIE-ISOLDE Dual magnetic Spectrometer

Olof TENGBLAD ISCC Oct. 22nd 2013

There will be a presentation during the ISOLDE workshop 25-27 November by **Lorens Willman** from the TRIµP collaboration at KVI. But as not everyone will be present I will give some background and some explanation to what the TRIµP is and how it could fit at HIE-ISOLDE.

- Workshop in LUND March 2011 where it was expressed a strong interest • for having a Zero- degree spectrometer coupled to HIE-ISOLDE.
- The initiative was postpone due to the rapid advance of the TSR project • and two such projects on the same time was too much

HIE-ISOLDE Spectrometer Workshop 10-11 March 2011 Search Lund University Europe/Zurich timezone 囚

Overview

Scientific Programme

Call for Abstracts

- View my abstracts
- Submit a new abstract

Scientific Programme

Speakers include: Wilton Catford, Surrey, Barry Davids, TRIUMF, Andres Gadea, Valencia, Thorsten Kroell, Darmstadt, Matteo Pasini, CERN, Mauricy Rejmund, GANIL, Jan Saren, JYFL, Thierry Stora, CERN, Juha Uusitalo, JYFL.

WHY a Zero-degree spectrometer

ZERO DEGREE = SPECTROMETER

RESULTS from TIARA/MUST2 Nov2007

ZERO DEGREE = SCINTILLATOR

Original Proposal @ KVI

Trapped Radioactive Isotopes: Micro-laboratories for fundamental Physics

27 August 1999

$TRI\mu P$

Aanvraag in het kader van het investeringsprogramma NWO-Groot

H.W. Wilschut, M.N. Harakeh, R. Hoekstra, R. Morgenstern

This is not some old equipment laying around.

Original proposal for funding in August 1999, to build a "Microlaboratorie for fundamental Physics at KVI using Trapped radioactive Isotopes" 2001 Start building – 2005 ready for Beam

4.6 M€ project, where the Recoil separatar was 1.7 M€.

20052002 2003

2004

2004 2003

2003

2003³

year	Penning trap	725
	Initialization	25
2003	Superconducting solenoid	130
2000	Cryocooler for solenoid	100
2001	Trap structure, gas purification, diagnostics	25
	Vacuum parts including pumps	90
	Electronics and control	55
	Installation	300
2002	Liquid hydrogen tenget	140
	Liquid nydrogen target	140
2004	Henum compressor	25
2000	Cold head	25
2002	Controls	30
	Installation	60
2003	Infrastructure KVI	400
	Modification B-lab	50
2003	High-energy beam-line total	100
1999	Low-energy beam-lines total	100
	Low chergy becam mice total	200
2001	Installation	150
2001	Installation	150
2001	Grand total 4	150 1605
2001 2002	Grand total	150 1605
	2003 2000 2001 2002 2002 2000 2002 2003 2003	2003 Initialization 2000 Superconducting solenoid 2001 Cryocooler for solenoid 2001 Trap structure, gas purification, diagnostics Vacuum parts including pumps Electronics and control 1 Installation 2002 Liquid hydrogen target Helium compressor Cold head 2003 Controls 1 Installation 2003 Infrastructure KVI Modification B-lab High-energy beam-line total

TRIµP@KVI

The radioactive nuclei are produced using beams from the superconducting cyclotron AGOR. The high energy radioactive beam is transformed to a low-energy. High quality bunched beam by the combined fragment and recoil-separator.

TRIµP test beam report 2006

Available online at www.sciencedirect.com

SCIENCE DIRECT.

Nuclear Instruments and Methods in Physics Research A 560 (2006) 169-181

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

www.elsevier.com/locate/nima

Dual magnetic separator for TRI μ P

G.P.A. Berg*, O.C. Dermois, U. Dammalapati, P. Dendooven, M.N. Harakeh, K. Jungmann, C.J.G. Onderwater, A. Rogachevskiy, M. Sohani, E. Traykov, L. Willmann, H.W. Wilschut

Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen, The Netherlands

Received 8 September 2005; received in revised form 28 November 2005; accepted 16 December 2005 Available online 18 January 2006

Abstract

The TRI μ P facility, under construction at KVI, requires the production and separation of short-lived and rare isotopes. Direct reactions, fragmentation and fusion–evaporation reactions in normal and inverse kinematics are foreseen to produce nuclides of interest with a variety of heavy-ion beams from the superconducting cyclotron AGOR. For this purpose, we have designed, constructed and commissioned a versatile magnetic separator that allows efficient injection into an ion catcher, i.e., gas-filled stopper/cooler or thermal ionizer, from which a low energy radioactive beam will be extracted.

The separator performance was tested with the production and clean separation of ²¹Na ions, where a beam purity of 99.5% could be achieved. For fusion–evaporation products, some of the features of its operation as a gas-filled recoil separator were tested. © 2006 Elsevier B.V. All rights reserved.

PACS: 07.55.-w; 07.55.+h; 29.30.-h; 41.85.-p; 1.75.-i; 25.70.Mn; 25.70.-z

Keywords: Magnetic separator; Gas-filled separator; Secondary radioactive isotopes

Fragmentation mode

Target spot size +/-2 mm horizontal +/- 1 mm vertical

²¹Ne⁷⁺ @ 43 MeV/u on 20 mg/cm² polyethylen target The emerging primary beam now ²¹Ne¹⁰⁺ is stopped in slits SH2

The time of flight vs. energy loss in a 100 mm silicon detector shows various nuclides at the intermediate plane (T2). At the final focal plane (T3) there is only ²¹Na and a small contamination of stable ²⁰Ne which could be reduced to below 0.5 %

P20 ENSAR supported experiment in 2013.

¹⁵N from AGOR on Deuterated gas target @ T1 \rightarrow the produced ¹⁶N was separated and transported and slowed down to be implanted in a micro strip detector to measure. ¹⁶N $\rightarrow \beta + {}^{16}O + \alpha$ measure the summed deposit energy

ENSAR-supported experiments

P20 R. Raabe & H. Fynbo β-delayed α-decay study of ¹⁶N using the implantation method

to extract information relevant for the determination of the reaction rate of the very important ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction, a key reaction in helium burning

¹⁶N separated & implanted in a DSSSD. For beta decay study

H. Fynbo, priv. comm.

TRIµP with MiniBall

What would an ideal zero-degree device achieve?

- identification of reaction products
- physical separation of reaction products $\leftarrow \rightarrow$ beam
- physical separation of reaction products $\leftarrow \rightarrow$ fusion-evaporation
- physical separation of isobaric beams or other beam contaminants
- large enough angular acceptance to pick up sequential decay products

 excellent angular resolution to allow kinematic reconstruction – missing-p