

Beam developments during the LS1

Thierry Stora, EN-STI-RBS

Priorities

GROUP for the **UPGRADE** of **ISOLDE** GUI

Chairman: Maria J. Borge

Scientific secretary: Thierry Stora

The GUI collects information and discusses necessary actions for the http://isolde-upgrade.web.cern.ch/isolde-upgrade/upgrade/upgrade of the ISOLDE facility. The committee meets twice a year. The priorities for Target and ion source R&D are discussed in the September meeting.

GUI mandate

GUI members

GUI Minutes

GUI next agenda - Next meeting 22nd Oct. 2013

							-	• •		
neutron converter	fissions (Cd, Zn, Cu, etc)	n-rich	several		Beam purity/intensity	х	х	R. Luis		PHASE II UNDERWAY
Pb/Bi loop	Hg, (Cd if molt Sn, Ne/C if molt NaF)	n-def	IS477 IS490 IS521		diffusion chamber/time cst	х	x	T. Stora	EURISOL P.O.	UNDERWAY
Ta(&W&Ir)-W UC-W	Lanthanides, At	¹⁴⁰ Pr(int) 178-180Yb Dy, Er 221- 223At(pur)	IS517 IS498	COLLAPS ISOLTRAP	Beam purity/intensity			T. Stora	S. Kreim, D. Yordanov	Stand-by
YO-molten ZrF4 - VD5	Kr	70,71Kr	IS490	ISOLTRAP	Beam intensity			T. Mendonca/JP Ramos	S. Kreim	Stand-by

GUI priority list for Target and ion source R&D

ISCC – 22nd Oct 2013

(nano)-**materials** (Synthesis, ageing, diffusion)

ISOLDE A normal year of operation ... **Example 1 But not during LS1**

		Taraat	Target	Source	MM /A Bisama MM					Aug				6	Sep				Oct	
	0	No.	type	Source	A/B:different MM)	Wk	27	28	20	30	21	32	32	34	35	36	37	28	30	
1		#459	empty	-	-	IIA	41	20	23	30	31	JZ	30	34	30	- 50	31	30	55	
2	1 II.	#442	Ti	W-LIST	Mg/Mg1000nAh/Rb	Mo	UC CP		18	25			15	22	29		REX-MD	19	-	
3		#443	Та	w	Sm,Dy/1000nAh Sm/Cs	Tu	8				IS477	YOCP							Cooling period	
4		#444	ZrO	W	Ga/Rb/Zn	Mo		ICARE				0 m	0	ภ	16			9	3	
5		#445	ThCx	W	TI/Au	vve		15405	S period	LISCO		-	E IS478	-				2		0.1
6		#446	YO	VD5	leak<= 1e-6mbarL/s	Th	2			Eletet:	IS477			UC W-F		Jeune Gen			TISD	Unli
7		#447	UC	Та	TI/Pb		2		110 7			1			61	15451				
8		#448	Ta	W	Dy/1000nAh Dy/Cs	Fr		15475	UCiaqn						N N					Test
9		#432	CaO	VD7	leak<= 1e-6mbarL/s	Sa		13473		19477			15470		IS484		102			1000
10		#449	Sn	VD5	leak<= 1e-6mbarL/s	Ja			<u> </u>	15411	Cooling		15470		-		105			
11		#450	Та	GdB6	Nd/Cs/Sm+Pr	Su		19506			period									
12	.	#451	UC	Та	Ag/Cs/Na	-		10000		-			No. of Concession, Name							
13		#460	pellets	W	1MM+return												_			
14	11						+ 1	VADIS or	n plexi supp	port for den	10		Control roor	n Fr	ri 7/1/11	Fri 7/1/	11			
15		#452	UC	VD7	leak<= 1e-6mbarL/s	full TANTALUM VADIS proto in place of Mo !!					HRS	Mon	6/20/11	Fri 7/1/	11					
16		#453	UC	Re	TI/Cs/Na	Re foil in W cavity - container vertic. elect. Connections					GPS	Wed	6/29/11	Tue 7/12/	11					
17		#454	UC	W n gartz	Cd/Cs	cold	cold quartz. Same temp profile (& 128Cd/ln yields) as UC362						HRS	F	ri 7/8/11	Thu 7/21/	11			
18	II.	#455	UC	W	Cd/Cs/Tl?	back up 447? -full Re cavity ion source if possible						GPS	Fri	7/15/11	Thu 7/28/	11				
19	11	#456	YO	VD7	leak<= 1e-6mbarL/s	for 72Kr Impurities Ge, As, etc/ 35% Kr eff.						HRS	Tue	7/26/11	Mon 8/8/	11				
20		#457	UC	Re	Na/Mn/Rb	tbd				GPS	Mo	n 8/1/11	Fri 8/12/	11						
21	11	#458	UC	W	leak 1e-4mbarL/s	for possible CF4, but no injection before confirmation !!					HRS	Thu	8/11/11	Wed 8/24/	11					

ne s!

- 8B
- 9C
- 37K
- Pb/Bi target for EURISOL (LIEBE project) nano-UCx (ActILab-ENSAR)
- refractory molecular beams combined with RILIS
- New neutron converter (with TRIUMF) Ba beams

Molten salt unit

Table 2. Selected phase transition properties of salt compounds and key mixtures								
Salt constituent(s)	Freezing point (°C)	Normal boiling point (°C)	900°C vapor pressure (mm Hg)					
LiF	845	1681	0.1					
NaF	995	1704	0.07					
KF	856	1502	1.2					
RbF	775	1408	0.75					
ZrF.	912	905 (sublimes)	722					
BF ₃	-126	-100	NA					

Static unit

Material: Haynes 242

 (corrosion resistant alloy)
 VADIS ion source
 ε_{Ne}~1.8%

(via cold transfer line)

- Three thermocouples (container, chimney, cold line)

T. Mendonca et al., NIMB (answer to referees)

ISCC – 22nd Oct 201

Improvement of ~x2-4 with VADIS on ¹¹¹Cd yield X3 on Hg yields

EN

ST

CĖRN

T. Mendonca et al.

Containment in stainless steel

Courtesy of V. Barozier and M. Delonca

199192

Ramos J. P., and et. al, 2013, "Intense 31-35Ar beams produced with nanostructured CaO target at ISOLDE.", submitted to Nucl. Instr. Meth. B

4444

Nano TiC

Beams of interest

 37 K – 1.22 s

(Produced at ISOLDE)

ISOLDE (SC) 7.1E6 uC⁻¹ with titanium foils

Estimated total release efficiency from nano TiC target 1E-3 to 5E-3

> Production 1E9 (50g TiC) Target yield goal of **2E8 to 8E6 uC⁻¹**

TiC used as a target material in TRIUMF

 $^{35}Ca - 25 ms$

(Never produced at ISOLDE)

³⁷Ca – 181 ms - ISOLDE (SC) 5.5 uC⁻¹ with titanium foils

Estimated total release efficiency from nano TiC target <u>1E-5 to 5E-5</u>

Production 5E3 to 1E4 (50g TiC) Target yield goal of **0.2 uC⁻¹**

Turrion M., and Urszula H.-I., "ISOLDE yield database" [Online]. Available: https://oraweb.cern.ch/pls/isolde/query_tgt. TRIUMF, "ISAC Yield Database" [Online]. Available: https://mis.triumf.ca/science/planning/yield/beam

ISCC - 22nd Oct 2013

CÈRI

_ab

A. Gottberg et al., to be submitted

Ucx after irradiation

Before irradiation

From Last week

ActILab

Data on crystalline phase evolution and fission product chemistry curr

A. Gottberg et al.,

After operation

Carbon naotubes + NanoUO₂

A. Gottberg et al.,

(1st version at ISOLDE:A. Gottberg, T. Mendonca, R. Luis et al.Experimental tests of an advanced neutron-to-neutron converter at ISOLDE-CERN, ready for Subm. To NIMB)

EN

S

CERI

S. Cimmino et al. In collaboration with TRIUMF

Ε

S

CERM

Neutron fluence [neutron/cm2/uC]

9-C as CO+

- Systematic studies of former online runs with Carbon release:
 - Data available from 7 online runs
 - 9-C extracted only once for short period (~24h) from Y2O3 target
 - Main reason seems to be slow extraction
 - -> Choice of materials crucial factor

C. Seiffert et al.

- Release studies at Off-line mass separator
 - Injection of bursts of gas of interest (13-CO2, 13-CO, noble gases)
 - Release gives information about release efficiency and time structure
 - Investigation of different ion sources and materials

C. Seiffert et al.

ISCC - 22nd Oct 2013

- An ion source for molecular beams
 - High efficiencies seen with the MINIMONO ion source (Electron Cyclotron Resonance)
 - No hot tantalum surface
 - Helicon developed by Pekka Suominen & Matthias Kronberger
 - Two online runs on GPS : 2011 HfO2 fibers, 2012 CaO nano structured powder

Isotope (t _{1/2})	Target Material	Yield [1/uC]				
17-C (173ms)	HfO2	8				
10-C (19.3s)	CaO (nano)	1.7*10^4				
11-C (1222.2s)	CaO (nano)	2.7*10^6				

M. Kronberger et al., NIMB, online (2013)

8-B from Boron fluoride

• Study on chemical behaviour and diffusion properties

- Boron has to be extracted as a fluoride
- Diffusion studies with alpha energy loss method $[10-B(n,\alpha)7-Li]$
 - Step 1: Implantation of 10-B as 10-BF2 into target materials at offline separator
 - Step 2: Measurement of initial distribution with 10-B(n, α)7-Li method
 - Capture cross section of 10-B for thermal neutrons: σ =3840 mbarn
 - Use of strong Pu-Be source: 1.1*10^8 neutrons/second @4Pi
 - Step3: Heating of Sample
 - Step4: Measurement of new distribution
 - Eventually choice of best target material
- Collaboration with Saraf/Israel, n-TOF, PSI, Ya

C. Seiffert et al.

199192

ISCC – 22nd Oct 2013

M. Gai et al.

Team & Collaborations

- E. Barbero, B. Crepieux, M. Owen, S. Marzari: Production, infrastructures
- C. Seiffert : molecule evaporation
- R. Luis : neutronics (ITN, Lisboa)
- Dr. A. Gottberg : target materials, incl. Uranium (ENSAR-FP7, ActILab).
- J. P. Ramos : Target nanomaterials (Univ. Aveiro)
- M. Czapski : material analysis support (CATHI ITN Marie-Curie program)
- Dr. T. Mendonca : High power targetry
- S. Cimmino : Thermal management

GANIL, IPNO, INFN, PSI (Uranium, ENSAR "ActiLab"), TRIUMF, JAEA ITN (neutronics, UCx) EPFL, Aveiro, ITN (materials) ESS, CEA, SCK•CEN-Myrrha, SINP, PSI (high power targetry)

- As much offline studies as possible.
- Many publications done, submitted or in preparation
- Some online tests foreseen in other facilities, eg ALTO for ActILab, SARAF for
 10B implanted target or TRIUMF for new n-converter
- Already some developments ready for tests/confirmation at start-up
- Input from GUI this morning...