

Experience of In-Kind at CERN and ESS

The collaborative model

Mats Lindroos
Head of Accelerators

For the ESS part also Håkan Danared Deputy head of ESS Accelerator Division

www.europeanspallationsource.se January 14, 2013

Outline

- I will speak about In-kind at one of CERN facilities (ISOLDE) run by a CERN collaboration
 - ✓ Collaboration manages in-kind (and advices on science program) with strong host laboratory support
- I will also speak about In-Kind contributions for the ESS <u>Accelerator</u> design update project and the preparations for the in-kind contributions for the ESS accelerator construction
 - ✓ Laboratory manages in-kind with advice from e.g. the collaboration.

ISOLDE: A Few Facts

- ISOLDE is the CERN radioactive beam facility
- In operation since 45 years
- The largest selection of isotopes of any ISOL facility worldwide
- Provides low energy or post-accelerated beams
- Run by an international collaboration: 13 members (B, <u>CERN</u>, Dk, E, F, Ge, Gr, I, *India*, N, R, S, UK)
- Open to users from around the world
- HIE-ISOLDE Project approved in 2009

ISOLDE at CERN

Produced Nuclei: ISOLDE 45 y Experience

Experimental hall

Near Future: HIE-ISOLDE project

The TSR in a nutshell

HIE-ISOLDE & TSR

- TOTAL COST OF THE Project = 43.180 KCHF
- External contribution 21.980 KCHF
- TSR Storage Ring for ISOLDE = 17950 KCHF
- The two projects together 61130 KCHF

ISOLDE collaboration and CERN

- The international collaboration representing a major part of the users are at the core of ISOLDE
 - ✓ Collaboration proposes ISOLDE team leader to CERN and elects spokesperson
 - ✓ MoU formalizes relationship to CERN (e.g. sharing of costs)
 - ✓ Annual contributions from collaboration members is used for facility improvements and experiments
 - ✓ Collaboration coordinates grant application for new projects and new experiments
 - ✓ University groups in collaboration member states owns and operates open fixed experiments at ISOLDE

CERN role

- ✓ Operates the facility according to MoU and pays for infrastructure for CERN approved upgrades and projects
- ✓ Approves <u>all experiments</u> through a peer review process in a the appropriate CERN scientific committee (INTC)

ESS accelerator

Design Drivers:

High Average Beam Power

5 MW

High Peak Beam Power

125 MW

High Availability

> 95%

Key parameters:

-2.86 ms pulses

-2 GeV

-62.5 mA

-14 Hz

-Protons (H+)

-Low losses

-Attention is paid to cryoplant turn down capabilities to minimize use of electrical heaters at low temperatures and proper cryogenic design techniques to minimize static heat leaks -Flexible design for future upgrades

ESS Linac

	Energy (MeV)	No. of Modules	No. of Cavities	eta g	Temp (K)	Cryo Length (m)
Source	0.075	I	0	_	~300	_
LEBT	0.075	_	0	_	~300	_
RFQ	3.6	I	I	_	~300	_
MEBT	3.6	_	3	_	~300	_
DTL	90	5	5	_	~300	_
Spoke	220	13	2 (3C) × 13	0.5 β opt	~2	4.14
Medium β	570	9	4 (6C) × 9	0.67	~2	8.28
High β	2000	21	4 (5C) × 21	0.86	~2	8.28
HEBT	2000	_	0	_	~300	_

Prototyping the ESS accelerator

Organization and Work package leaders

Lead engineers: Aurelien Ponton, Benjamin Cheymol, Stephen Molloy, Christine Darve, Peter Ladd, Tom Shea

WP#	WP TITLE	WP LEADER	EXTERN AL WP?	LIASON FOR EXTERNAL WP
1	MANAGEMENT	J.G. WEISEND II	NO	
2	ACCELERATOR PHYSICS	M. ESHRAQI	NO	
3	NORMAL CONDUCTING FRONT END	S. GAMMINO	YES	A. PONTON
4	SPOKE CRYOMODULES	S. BOUSSON	YES	S. MOLLOY
5	ELLIPTICAL CRYOMODULES	P. BOSLAND	YES	C. DARVE
6	HEBT & MAGNETS	S. MØLLER	YES	P. LADD
7	BEAM DIAGNOSTICS	A. JANSSON	NO	
8	RF SYSTEMS	A. SUNESSON	NO	
9	ACCEL INFRASTRUCTURE & INSTALLATION	G. LANFRANCO	NO	
10	TEST STANDS	W. HEES	MIXED	W. HEES
11	CRYOGENICS	P. ARNOLD	NO	
12	VACUUM	P. LADD	NO	
13	SAFETY & RELIABILITY	A. JANSSON	NO	
14	REDESIGN EFFORT	D. McGINNIS	NO	
15	COOLING & ELECTRICAL SUPPORT	F. JENSEN	NO	

Division and project aligned at high level

- ✓ "WP as a group" would make for too big fragmentation
- ✓ Four WPs have external leaders
- Weekly or bi-weekly meetings at ESS Accelerator Division
 - ✓ Management board of project and division
 - ✓ WP leaders
 - ✓ Lead engineers
 - ✓ Safety
- Regular meetings for ACCSYS project
 - ✓ Technical board (all WP leaders and reps of labs/ uni. with contract) as governance and CCB on project level (6 meetings per year)
 - ✓ Collaboration board with reps of director of of labs/uni. with contracts as oversight committee
 - ✓ Audits yearly of every WP
 - ✓ Reviews (Conceptual, design, ready to build) as required mostly co-organized with audits

Very high level Schedule

In-Kind Potential and Partners

Probable in-kind contributions where contacts are established with partners amount to 35% of ACCSYS budget.

Another 45% are mainly commercial items which are potential in-kind contributions, but where no partners that could provide funding have been identified.

Seven countries are giving contributions to the ACCSYS pre-construction phase, and all are expected to participate also as inkind partners for construction.

Staff plan and in-kind

• Leveling required: i) move non critical activities, ii) temporary staff movements within division and iii) look for in-kind partners who can contribute with staff on site

Experiences from ESS ACCELERATOR collaboration

- The collaboration of laboratories and universities working with the design and construction of the ESS accelerator was formed in parallel to ESS contracting and grant proposals for in-kind contributions.
- A collaboration agreement to which ESS is a partners sets out the framework for the collaboration.
- The collaboration has served as a direct link for the ESS management to the management of all contracted collaboration partners
- The collaboration has helped along in-kind discussions in ESS member states for the ESS accelerator and discussed division of work
- The collaboration has recently invited potential in-kind partners (not yet contracted) to facilitate discussions for ESS on future in-kind contributions to the accelerator
- Some high level technical issues involving the partner labs are discussed in the collaboration committee
 - ✓ The Technical Board of the accelerator project and the weekly project management board handles the project management within the ESS management structure

Strategy, disputes and competition for IK proposals

ISOLDE collaboration:

- ✓ The collaboration <u>takes decisions</u> on the the future plans for the ISOLDE facility based on the user communities needs and <u>agrees on a strategy for grant proposal</u> to finance new activities and projects.
- ✓ Fully financed improvements of the facility and the experiments can be realized after final approval from INTC and the CERN Research board
- ✓ The framework for the collaborations work and responsibilities is set out in an MoU with CERN

• ESS accelerator collaboration:

- ✓ The collaboration discuss and advice the ESS CEO on in-kind issues for the ESS accelerator project
- ✓ The ESS STC has the final say in all in-kind matters after advice from the appropriate ESS committees. In particular, the IK Review Committee play a key role for the approval of in-kind
- Contracts between ESS and the partners regulates the details and sets out process for e.g. resolving disputes, delays etc.

Conclusions

- The model with a collaboration of partners which advices and facilitates the management of in-kind contributions is a powerful tool:
 - ✓ Identify and help with grant proposals to finance in-kind
 - ✓ To create consensus on the division of work between in-kind partners
 - ✓ Resolving conflicts and technical issues at laboratory level whenever possible
- Partners with a solid link to the future users have a long term commitment and a stronger motivation to look for grants to finance inkind
- "Open books" within collaboration (where the host laboratory is one partner) creates trust and helps assure good value for invested money