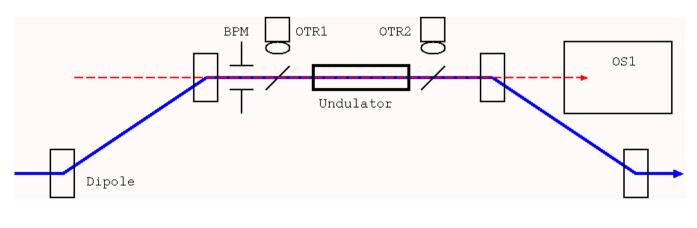


## SelKC2XFEL: Laser Heater

#### Volker Ziemann, Uppsala Universitet

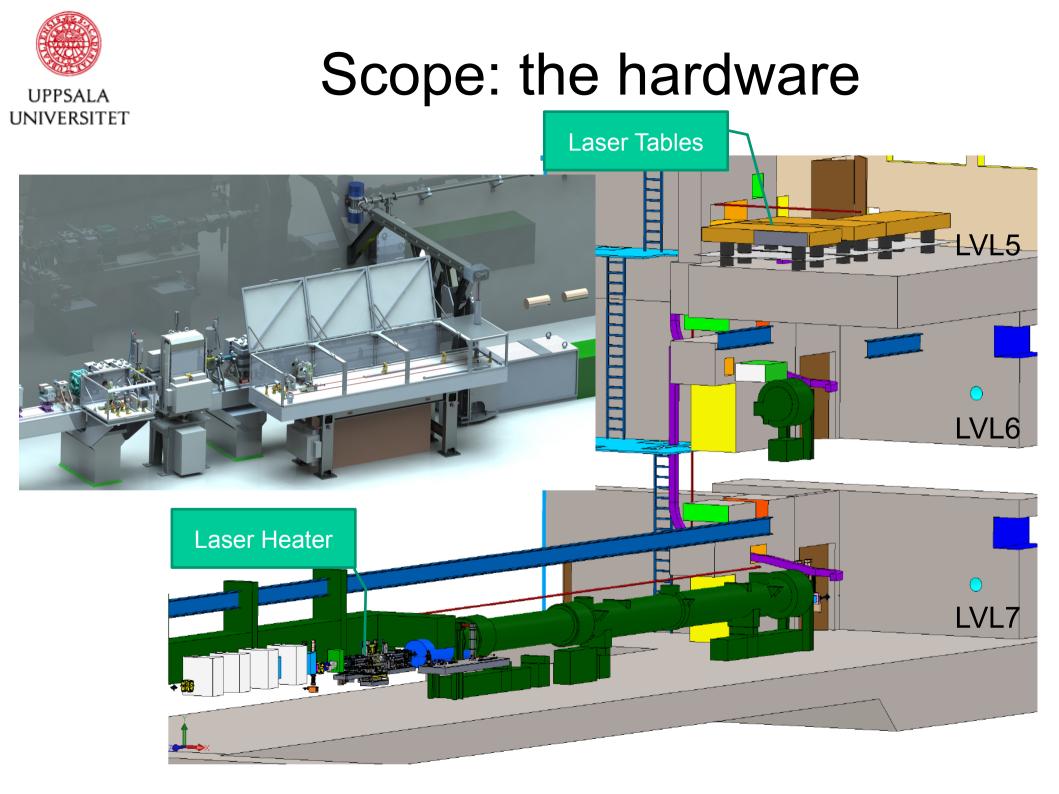
#### What is it? Technical Description Time, Money, and Interfaces Lessons




UNIVERSITET

# What is it?




- Electrons have small momentum spread (~keV)
  - susceptible to microbunching instabilities
- Add Landau damping (decoherence) in a wellcontrolled way to increase momentum spread
  - induce moderate momentum modulation by passing a laser over the electrons in an undulator





# Why Uppsala University?

- After closing Celsius and Cryring SU+UU+KTH founded FEL center in 2006.
- In-kind money for the XFEL start-up phase for three projects (~1 MEuro)
  - Magnet measurement, Vacuum, Optical replica
- In collaboration we built and tested the ORS in FLASH (2006-2009)
  - Laser-ebeam interaction, experience with achieving overlap
- Colleagues at DESY suggested that we might take on the laser heater.





## The crucial concepts

- Time
  - Delays on both ends of the project
- Money
  - Cost-book
  - Delays cost money
- Interfaces
  - Electrical, Vacuum, Controls, Space, Access
  - Independence in technical details
  - Specifications for hardware
  - Subcontractors
  - Administration (follow-up, accounting)





UNIVERSITET

## Time

- Feb/Mar 2008: Call from Swedish Research Council
- May 2008: Positive decision with request to reduce the scope
- The long wait: nothing happened, and for several reasons in June 2009 I cancelled my application
  - because I could not with a good conscience guarantee to DESY/XFEL collegues to complete project in the then current time schedule.
- Request to reopen application in October 2009.
- Positive decision in April 2010 with funds for salary for three years and an optional fourth year.
- First money in Oct 2010 (hire Mathias Hamberg 1/2011)
- Installation and partial commissioning in 2014
- First beam in 2015



UPPSALA UNIVERSITET



- Cost-book value 660 kEuro(2005 value)
  - based on 'doing it' at DESY with experienced personnel
  - guesstimate, I tried to talk DESY into a more realistic level, but...
- Raised to 850 kEuro for VR. Too late to help me in my negotiations with VR...
- It's more expensive for an external contributor
  - start from scratch and build up experience
  - decision's take longer (no common coffee or lunch...)
  - need to out-source tasks that DESY might do in-house
- Different modes of operation
  - DESY: many people do expert work on a small subsystem
  - UU: few people work on many aspects
  - Less pipe-lining of work possible, larger friction losses
- Delays take time and money, difficult to predict



## Interfaces 1

- Electrical, Vacuum, Controls, Space, Access
  - mostly not a problem, talk to the DESY experts and follow their advice, but could come up with our own 'solutions' to technical challenges.
  - small glitch with vacuum, unclear specifications, we had needed more guiding than we actually received in the beginning
  - sometimes long response time when questions arose, understandable due to busy schedules, BUT...
  - ...DESY had not anticipated time and man-power for baby-sitting in-kind contributors, but that is needed.
- Laser related issues
  - no responsible partner at DESY for a loooooong time



### Interfaces 2

- Administration
  - was sometimes a bit forgotten, both my WP leader and I were more interested in the technical issues
  - lazy book-keeping of milestones and deliverables
  - different milestones for XFEL-VR than XFEL-UU, bad!
  - dates of milstones were originally based on a much more agressive schedule than actually came (undulator is in storage now, awaiting...). We adjusted mentally the dates, but not in writing.
  - milestones may fall off the end of the money. I cannot pay salaries for waiting for commissioning with beam (try to interleave with other projects, but unclear)



UNIVERSITET

### Interfaces 3

- Subcontractors, the larger ones
  - Laser guiding and stabilization system: well-proven (also at DESY) system ordered.
  - Electron vacuum chamber. Technically very demanding, we're iterating. Avoid triangle dramas.
  - Undulator, KYMA:
    - Kyma won the tender (help from UU admin with tendering process)
    - Travelled several times to witness progress, discuss technical issues
    - ...and participate in commissioning with pleasant colleagues.
    - sub-optimal split of responsibilities regarding control system
    - delivered on time and worked flawlessly during the acceptance tests at DESY (was a bit difficult to get time on a bench at DESY, but Hasylab came to the rescue)
    - Transparent interactions, well documented. Well defined (by Kyma) milestones that we ticked off.



#### Lessons

- For me
  - Start Yoga, patience is a virtue!
  - Pay more attention to the administrative issues!
- For you
  - In-kind contributors need baby-sitting to be able to conform to the rules and guidelines. Foresee resources for that!
  - In-kind contributors are more expensive, they need to become 'experts' in many fields do not mass-produce.
  - Foresee contingencies when schedule slips! Who pays?
  - Try to make the cost-book semi-realistic!
  - Build up expertise at collaborators! Next time they know...