Expression of Interest: Proposal to search for Heavy Neutral Leptons at the SPS

(CERN-SPSC-2013-024 / SPSC-EOI-010)

On behalf of:

- W. Bonivento^{1,2}, A. Boyarsky³, H. Dijkstra², U. Egede⁴, M. Ferro-Luzzi², B. Goddard², A. Golutvin⁴, D. Gorbunov⁵, R. Jacobsson², J. Panman², M. Patel⁴, O. Ruchayskiy⁶, T. Ruf², N. Serra⁷, M. Shaposhnikov⁶, D. Treille^{2 (‡)}
- ¹Sezione INFN di Cagliari, Cagliari, Italy

²European Organization for Nuclear Research (CERN), Geneva, Switzerland

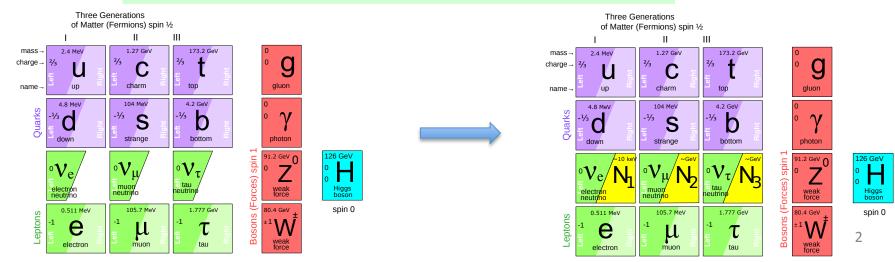
³Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands

⁴Imperial College London, London, United Kingdom

⁵Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

⁶Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

⁷Physik-Institut, Universität Zürich, Zürich, Switzerland

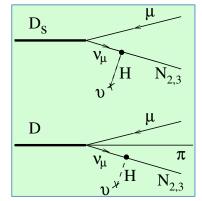

^(‡) retired

Theoretical motivation

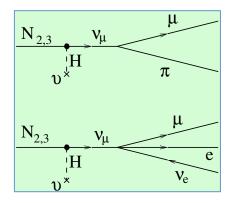
- Discovery of the 126 GeV Higgs boson

 Triumph of the Standard Model
 The SM may work successfully up to Planck scale!
- SM is unable to explain:
 - Neutrino masses
 - Excess of matter over antimatter in the Universe
 - The nature of non-baryonic Dark Matter
- All three issues can be solved by adding three new fundamental fermions, right-handed Majorana Heavy Neutral Leptons (HNL): N₁, N₂ and N₃

vMSM: T.Asaka, M.Shaposhnikov PL B620 (2005) 17

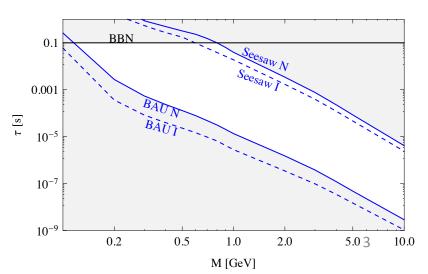

Masses and couplings of HNLs

- N_1 can be sufficiently stable to be a DM candidate, $M(N_1)\sim 10 \text{keV}$
- $M(N_2) \approx M(N_3) \sim a$ few GeV \rightarrow CPV can be increased dramatically to explain Baryon Asymmetry of the Universe (BAU)

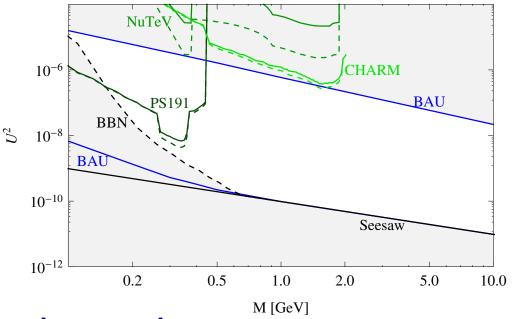

Very weak $N_{2,3}$ -to- ν mixing (~ U^2) $\rightarrow N_{2,3}$ are much longer-lived than the SM particles

Example:

 $N_{2,3}$ production in charm



and subsequent decays



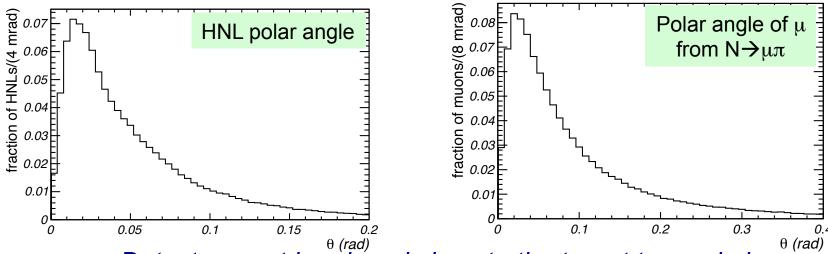
- Typical lifetimes > 10 μ s for $M(N_{2.3}) \sim 1$ GeV Decay distance O(km)
- Typical BRs (depending on the flavour mixing):

Br(N
$$\rightarrow \mu/e^{-} \rho^{+}$$
) ~ 0.1 – 50%
Br(N $\rightarrow \mu/e^{-} \rho^{+}$) ~ 0.5 – 20%
Br(N $\rightarrow \nu \mu e$) ~ 1 – 10%

Experimental and cosmological constraints

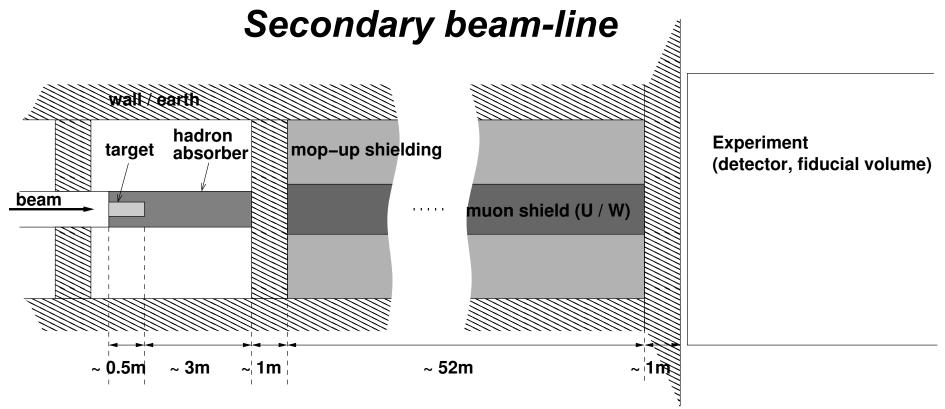
- Recent progress in cosmology
 - The sensitivity of previous experiments did not probe the interesting region for HNL masses above the kaon mass

Strong motivation to explore cosmologically allowed parameter space


Proposal for a new experiment at the SPS to search for New Particles produced in charm decays

Experimental requirements

Search for HNL in Heavy Flavour decays

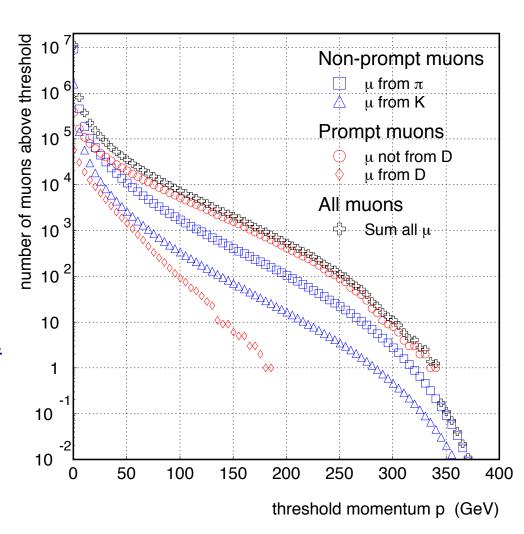

Beam dump experiment at the SPS with a total of 2×10²⁰ protons on target (pot) to produce large number of charm mesons

HNLs produced in charm decays have significant P_T

Detector must be placed close to the target to maximize geometrical acceptance

Effective (and "short") muon shield is essential to reduce muon-induced backgrounds (mainly from short-lived resonances accompanying charm production)

Proton target

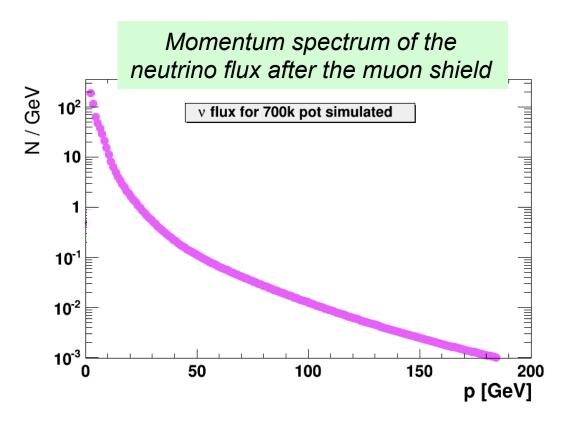

- Preference for relatively slow beam extraction O(s) to reduce detector occupancy
- Sufficiently long target made of dense material (50 cm of W) to reduce the flux of active neutrinos produced mainly in π and K decays
- No requirement to have a small beam spot

Secondary beam-line (cont.)

Muon shield

Main sources of the muon flux (estimated using PYTHIA with 10⁹ protons of 400 GeV energy)

- A muon shield made of ~55 m W(U) should stop muons with energies up to 400 GeV
- Cross-checked with results from CHARM beam-dump experiment
- Detailed simulations will define the exact length and radial extent of the shield

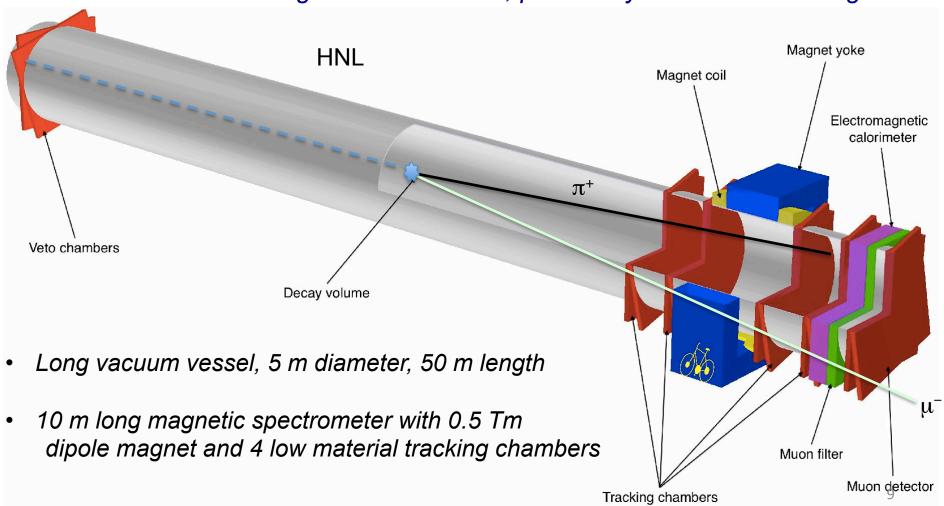


Assume that muon induced backgrounds will be reduced to negligible level with such a shield

Experimental requirements (cont.)

 Minimize background from interactions of active neutrinos in the detector decay volume

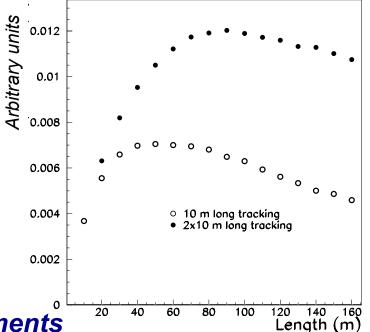
Requires evacuation of the detector volume



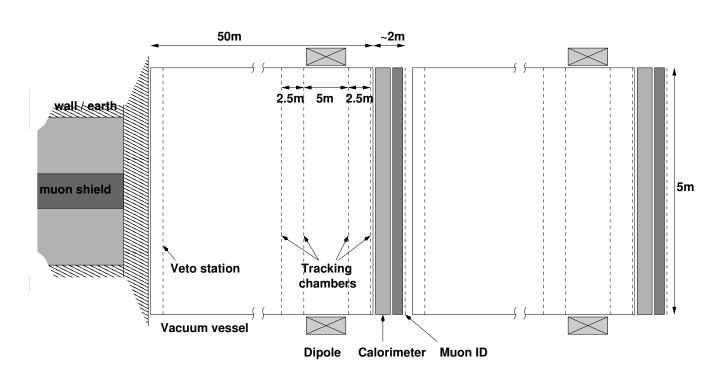
2×10⁴ neutrino interactions per 2×10²⁰ pot in the decay volume at atmospheric pressure → becomes negligible at 0.01 mbar

Detector concept

• Reconstruction of the HNL decays in the final states: $\mu^-\pi^+$, $\mu^-\rho^+$ & $e^-\rho^+$

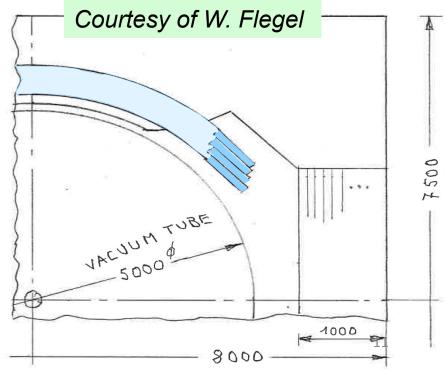

Requires long decay volume, magnetic spectrometer, muon detector and electromagnetic calorimeter, preferably in surface building

Detector concept (cont.)


Geometrical acceptance

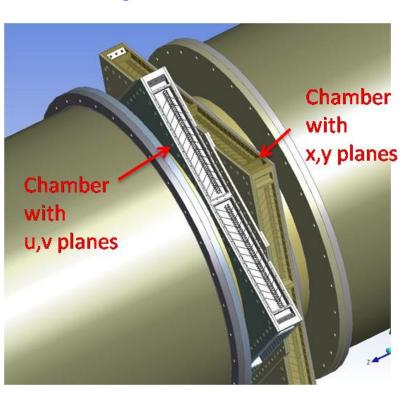
- Saturates for a given HNL lifetime as a function of detector length
- The use of two magnetic spectrometers increases the acceptance by 70%

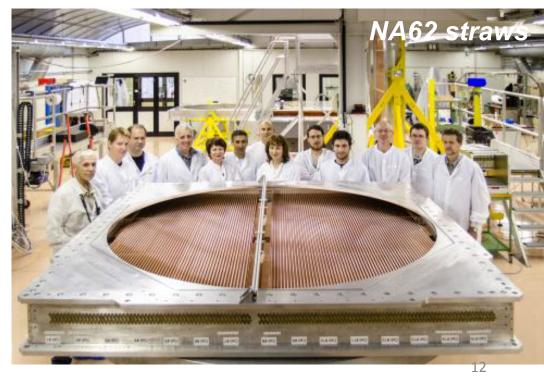
10


Detector has two almost identical elements

Detector apparatus based on existing technologies

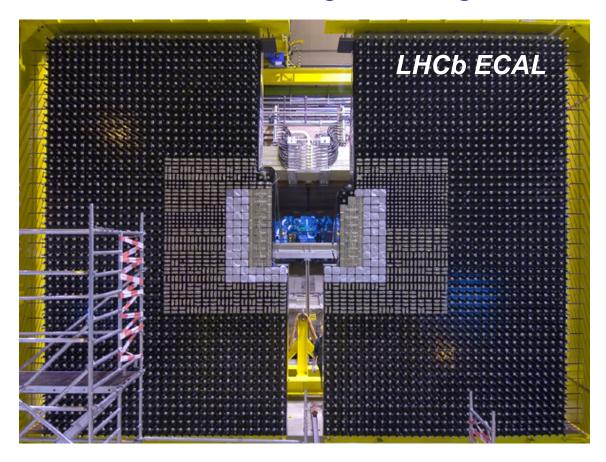
- Experiment requires a dipole magnet similar to LHCb design, but with ~40% less iron and three times less dissipated power
- Free aperture of ~ 16 m² and field integral of ~ 0.5 Tm
 - Yoke outer dimension: 8.0×7.5×2.5 m³
 - Two Al-99.7 coils
 - Peak field ~ 0.2 T
 - Field integral ~ 0.5 Tm over 5 m length




Detector apparatus (cont.)

based on existing technologies

NA62 vacuum tank and straw tracker


- < 10⁻⁵ mbar pressure in NA62 tank
- Straw tubes with 120 μm spatial resolution and 0.5% X₀/X material budget Gas tightness of NA62 straw tubes demonstrated in long term tests

Detector apparatus (cont.)

based on existing technologies

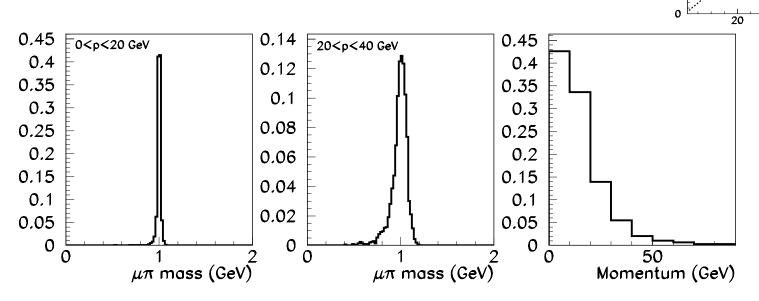
LHCb electromagnetic calorimeter

 Shashlik technology provides economical solution with good energy and time resolution

Residual backgrounds

Use a combination of GEANT and GENIE to simulate the Charged Current and Neutral Current neutrino interaction in the final part of the muon shield (cross-checked with CHARM measurement)

yields CC(NC) rate of ~6(2)×10⁵ per int. length per 2×10²⁰ pot


Instrumentation of the end-part of the muon shield would allow the rate of CC + NC to be measured and neutrino interactions to be tagged

- ~10% of neutrino interactions in the muon shield just upstream
 of the decay volume produce Λ or K⁰ (as follows from GEANT+GENIE
 and NOMAD measurement)
- Majority of decays occur in the first 5 m of the decay volume
- Requiring μ -id. for one of the two decay products
 - → 150 two-prong vertices in 2×10²⁰ pot

Detector concept (cont.)

Magnetic field and momentum resolution

- Multiple scattering and spatial resolution of straw tubes give similar contribution to the overall $\delta P/P$
- For $M(N_{2,3}) = 1$ GeV 75% of $\mu \pi$ decay products have both tracks with P < 20 GeV

• For 0.5 Tm field integral σ_{mass} ~ 40 MeV for P < 20 GeV

Ample discrimination between high mass tail from small number of residual $K_l \rightarrow \pi^+ \mu^- \nu$ and 1 GeV HNL

momentum (GeV)

12 mm, 2.5 m spacing

40

1.75

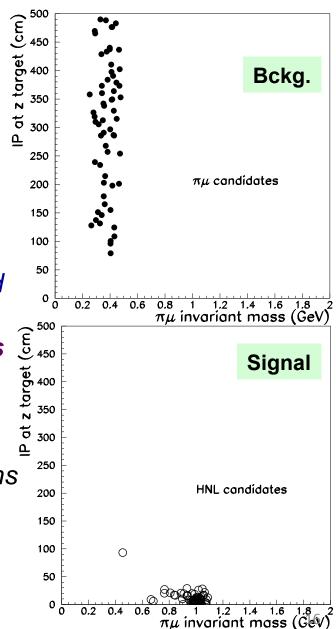
1.5

1.25

0.75

0.5

0.25


Detector concept (cont.)

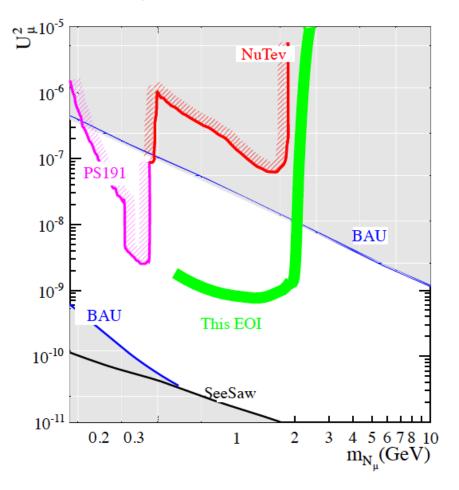
Impact Parameter resolution

K_L produced in the final part of the muon shield have very different pointing to the target compared to the signal events

Use Impact Parameter (IP)
to further suppress K_L background

- IP < 1 m is 100% eff. for signal and leaves only a handful of background events
- The IP cut will also be used to reject backgrounds induced in neutrino interactions in the material surrounding the detector

Expected event yield


- Integral mixing angle U^2 is given by $U^2 = U_e^2 + U_u^2 + U_\tau^2$
- A conservative estimate of the sensitivity is obtained by considering only the decay $N_{2,3} \rightarrow \mu^- \pi^+$ with production mechanism $D \rightarrow \mu^+ NX$, which probes $U_{\mu}^{\ 2}$
- $U^2 \longleftrightarrow U_{\mu}^2$ depends on flavour mixing
- Expected number of signal events:

$$N_{signal} = n_{pot} \times 2\chi_{cc} \times BR(U_{\mu}^{2}) \times \varepsilon_{det}(U_{\mu}^{2})$$
 $n_{pot} = 2 \times 10^{20}$
 $\chi_{cc} = 0.45 \times 10^{-3}$
 $BR(U_{\mu}^{2}) = BR(D \rightarrow N_{2,3}X) \times BR(N_{2,3} \rightarrow \mu\pi)$
 $BR(N_{2,3} \rightarrow \mu^{-}\pi^{+})$ is assumed to be 20%

 $\varepsilon_{\text{det}}(U_{\mu}^{2})$ is the probability of the $N_{2,3}$ to decay in the fiducial volume and μ , π are reconstructed in the spectrometer

Expected event yield (cont.)

Assuming $U_{\mu}^{2} = 10^{-7}$ (corresponding to the strongest experimental limit currently for $M_{N} \sim 1$ GeV) and $\tau_{N} = 1.8 \times 10^{-5}$ s $\sim 12k$ fully reconstructed $N \rightarrow \mu^{-}\pi^{+}$ events are expected for $M_{N} = 1$ GeV

120 events for cosmologically favoured region: $U_{\mu}^{2} = 10^{-8} \& \tau_{N} = 1.8 \times 10^{-4} \text{s}$

Expected event yield (cont.)

- ECAL will allow the reconstruction of decay modes with π^0 such as $N \to \mu^- \rho^+$ with $\rho^+ \to \pi^+ \pi^0$, doubling the signal yield
- Study of decay channels with electrons such as N \rightarrow e π would further increase the signal yield and constrain U_e^2

In summary, for M_N < 2 GeV the proposed experiment has discovery potential for the cosmologically favoured region with 10^{-7} < U_μ^2 < a few × 10^{-9}

Conclusion

- The proposed experiment will search for NP in the largely unexplored domain of new, very weakly interacting particles with masses below the Fermi scale
- Detector is based on existing technologies
 Ongoing discussions of the beam lines with experts
- The impact of HNL discovery on particle physics is difficult to overestimate!

It could solve the most important shortcomings of the SM:

- The origin of the baryon asymmetry of the Universe
- The origin of neutrino mass
- The results of this experiment, together with cosmological and astrophysical data, could be crucial to determine the nature of Dark Matter
- The proposed experiment perfectly complements the searches for NP at the LHC

Being discussed with:

European Organization for Nuclear Research (CERN)

France: CEA Saclay, APC/LPNHE Universite Paris-Diderot

Italy: Instituto Nazionale di Fisica Nucleare (INFN)

Netherlands: National Institute for Subatomic Physics (NIKHEF, Amsterdam)

Poland: Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences (Kracow)

Russia: Institute for Nuclear Research of Russian Academy of Science (INR, Moscow),

Institute for Theoretical and Experimental Physics ((ITEP, Moscow),

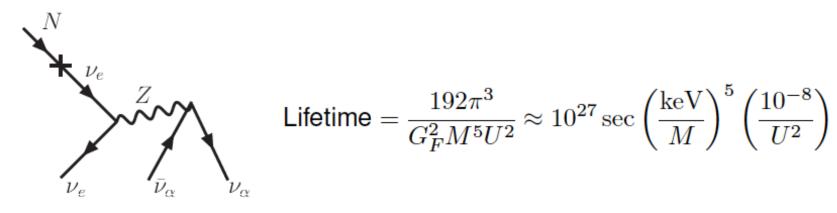
Joint Institute for Nuclear Research (JINR, Dubna)

Sweden: Stockholm University,

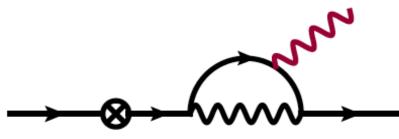
Uppsala University

Switzerland: Ecole Polytechnique Federale de Lausanne (EPFL),

University of Zurich, University of Geneva


UK: University of Oxford,

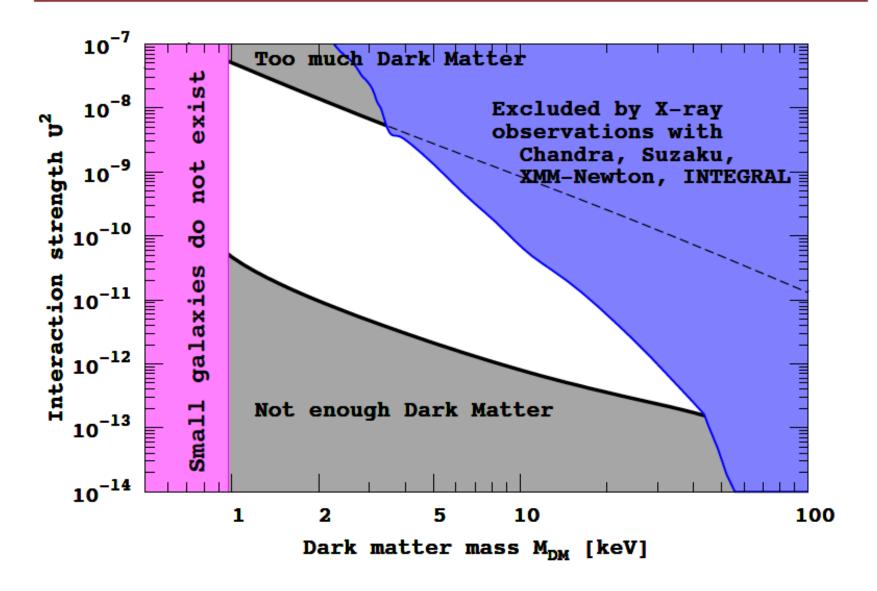
University of Liverpool, Imperial College London, University of Warwick


BACK - UP

Dark matter

For small Yukawa couplings HNL can live long and be dark matter

• Characteristic signature: can have radiative decay



Monochromatic decay line in the spectra of galaxies

$$E_{\gamma} = \frac{1}{2}Mc^2$$

Decaying dark matter candidate

Parameter space of HNL dark matter

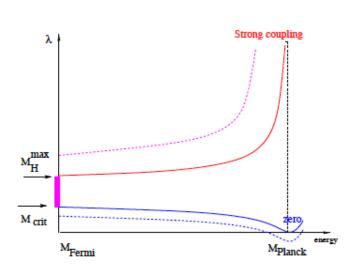
Searches for HNL in space

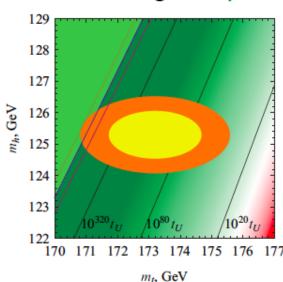
- Has been previously searched with XMM-Newton, Chandra, Suzaku, INTEGRAL
- Spectral resolution is not enough (required $\Delta E/E \sim 10^{-3}$)
- Proposed/planned X-ray missions with sufficient spectral resolution:

Astro-H

Athena+

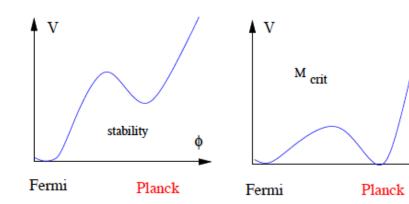
LOFT

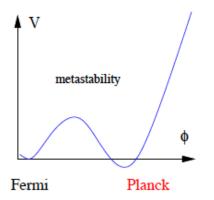



Origin/Xenia

The main LHC result: SM is a consistent effective theory all the way up to the Planck scale

- No signs of new physics beyond the SM are seen
- $lap{M}_{H} < 175~{
 m GeV}$: SM is a weakly coupled theory up to Planck energies


The mass of the Higgs boson is very close to the stability bound on the Higgs mass* (95'), to the Higgs inflation bound** (08'), and to asymptotic safety value for M_H^{***} (09'):

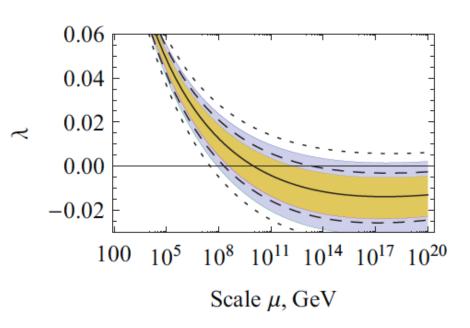

$$M_{crit} = [129.3 + \frac{y_t(M_t) - 0.9361}{0.0058} \times 2.0 - \frac{\alpha_s(M_Z) - 0.1184}{0.0007} \times 0.5] \text{ GeV}$$

 $y_t(M_t)$ - top Yukawa in $\overline{\mathrm{MS}}$ scheme

Matching at EW scale Central value theor. error Bezrukov et al, $\mathcal{O}(\alpha\alpha_s)$ 129.4 GeV 1.0 GeV Degrassi et al, $\mathcal{O}(\alpha\alpha_s, y_t^2\alpha_s, \lambda^2, \lambda\alpha_s)$ 129.6 GeV 0.7 GeV Buttazzo et al, complete 2-loop 129.3 GeV 0.07 GeV

Chetyrkin et al, Mihaila et al, Bednyakov et al, 3 loop running to high energies

- * Froggatt, Nielsen
- ** Bezrukov et al,


De Simone et al

*** Wetterich, MS

Cosmology: theory - p. 2

Our vacuum may be absolutely stable - this is perfectly admitted by the present data:

Higgs mass M_h =125.3±0.6 GeV

Higgs mass $M_h=125.3\pm0.6$ GeV 0.121Strong coupling $lpha_S(M_Z)$ 0.120 0.119 0.118 0.117 0.116 173 174 175 Pole top mass M_t , GeV

errors in y_t : theory + experiment

Tevatron: $M_t=173.2\pm0.51\pm0.71~{
m GeV}$

ATLAS and CMS: $M_t = 173.4 \pm 0.4 \pm 0.9$ GeV

 $\alpha_s = 0.1184 \pm 0.0007$

Main uncertainty - top Yukawa coupling.

- **9** 1 GeV experimental error in M_t leads to 2 GeV error in M_{crit} .
- Perturbation theory, $\mathcal{O}(\alpha_s^4)$. Estimate of Kataev and Kim: $\delta y_t/y_t \simeq -750(\alpha_s/\pi)^4 \simeq -0.0015$, $\delta M_{crit} \simeq -0.5$ GeV
- $m ext{ iny Non-perturbative QCD effects, } \delta M_t \simeq \pm \Lambda_{QCD} \simeq \pm 300 \ ext{MeV,}$ $\delta M_{crit} \simeq \pm 0.6 \ ext{GeV}$
- Alekhin et al. Theoretically clean is the extraction of y_t from $t\bar{t}$ cross-section. However, the experimental errors in $p\bar{p} \to t\bar{t} + X$ are quite large, leading to $\delta M_t \simeq \pm 2.8$ GeV, $\delta M_{crit} \simeq \pm 5.6$ GeV.

Precision measurements of m_H , y_t and α_s are needed.

Other BSM physics to be tested

- light, very weakly interacting, yet unstable particles: produced (in)directly on target, then decaying in the detector fiducial volume
 - light sgoldstinos (superpartners of goldstino in SUSY models)

```
e.g., D.S. Gorbunov (2001)
```

e.g. $D \rightarrow \pi X$, then $X \rightarrow I^+ I^-$

R-parity violating neutralinos in SUSY models

```
e.g., A. Dedes, H.K. Dreiner, P. Richardson (2001)
```

e.g. $D \rightarrow I \tilde{\chi}$, then $\tilde{\chi} \rightarrow I^+ I^- v$

massive paraphotons (in secluded dark matter models)

e.g. $\Sigma \to \rho V$, then $V \to I^+ I^-$