BDS

- Andrei Seryi, Deepa Angal-Kalinin, Emmannual Tsesmelis, Rogelio Tomas, Andrea Latina, Daniel Schulte
- Detectors
- Civil engineering

Collaboration

Three promising categories for collaboration

- 1. Generic work. Differences close to negligible. E.g. tool development. Just support this work.
- 2. Work with high synergy. Small effort needed to apply to both projects. E.g. correction procedure. Make sure solution is applied to other project.
- 3. Work with some synergy. Significant work is required to apply solutions from one design to the other. Foster information flow by common workshops and reviews.
- In practice, the separation of the different levels of synergy may not always be fully straightforward.

Optics Design and Optimization

- Design concepts and strategy
 - Collimation system
 - Final focus system
 - Diagnostics sections
 - Extraction lines
- Optimisation tools
 - Share and cross apply
- Tracking tools
- Beam based correction/tuning/feedback

ATF2

- Almost everybody is involved
- Already a global collaboration with both projects
- Tuning procedures
- Flight simulator
- Commissioning

Collimators

- UK, CERN, SLAC
- Collimator survival is likely critical and limits system design
 - Collaboration LHC/ILC/CLIC on collimator hardware
- Collimator tests at ATF2/SLAC
- Extends beyond BDS
 - Machine protection
 - Other machines (LHC,...)
- Generic work on collimator materials
 - E.g. cristal collimation
- Wakefields

Crab Cavity

- SLAC, FNAL, UK, CERN, INFN, KEK, FP7
- Design
- Phase stability
- Collaboration is ongoing to large extent
- Synergy with LHC upgrade

Beam Instrumentation

- Many institutes
- BPMs
- Laser wires
- Extraction line instrumentation
- Energy spectrometer including magnet
- Polarimeter
- Luminometers
- Orbit feedback design
- Intra-pulse IP feedback
- Generic tasks foreseen in FP7
 - BPMs
 - Laser wires

Potential Other Topics

- Beam pipe and vacuum system
- Beam dumps
 - Synergy with other projects
- Superconducting final doublet
 - Could be of interest for CLIC as well

Machine Detector Interface

- SLAC, CERN
- General layout and integration
 - Common meeting/review required
 - Common engineering tools for detector design in preparation (DESY, CERN, IN2P3, FP7)
- Background and luminosity studies
 - Strengthen support
- Masking system
 - Constraints on vertex detector
- Detector field
 - Need a field for CLIC
- Magnet design
- Common simulation tools for detector studies
 - Need to review what is available

Background and Luminosity Studies

- Common simulation tools
 - BDSIM ()
 - Integration into GEANT?
 - FLUKA (CERN)
 - Halo and tail generation (CERN)
 - Common formats etc
- Study of machine induced background
 - In particular, neutrons, muons and synchrotron radiation
 - Mitigation strategies
 - e.g. tunnel fillers against muons
- Study of beam-beam background and luminosity spectrum

Support, Stabilization and Alignment

- LAPP, Oxford, CERN, FP7
 - Other please join
- Low-noise design
 - Noise level measurements (DESY, CERN)
 - Among others, measurements at LHC
 - Component design
- Mechanical design of quadrupole support
- Final quadrupole design
- Stabilization feedback design
 - Sensors
 - Actuators
 - Interferometers

Experimental Area Integration

- Common definitions
- Infra-structure
 - Work is quite generic
 - No large differences expected for CLIC detector to some ILC detector
 - Collaboration has started
 - LHC expertise
- Push-pull
 - Is an option for both projects
 - A collaboration has started
 - Brings ILC/CLIC/LHC expertise
- Crossing angle
 - Should we try to find a common crossing angle?
 - Investigate need/benefit

First Milestones

- Identify contact persons for different tasks
- Have identified solutions for LHC that can be applied to ILC and CLIC
- Have identified solutions for ILC that can be applied to CLIC

Beam Physics

Nick Walker, Andrea Latina, Daniel Schulte

Introduction

- Large potential for synergy exists
 - It is already being exploited to some extent
- Common meetings
 - Helps to avoid to forget relevant effects
 - To profit from clever ideas of the other project
 - Some information exchange in ILC workshops
- Common standards
 - We should try to agree on standards where possible
- Common codes
 - Share the work of the codes
- Common studies
 - Fully exploit expertise of people

Common Standards

- Simplify collaboration
 - Benchmarking
 - Fast application of simulation tools on the other project
 - Reduces the likelihood of errors
 - Reduced resources requirements
- Some collaboration is already ongoing
- Machine models
 - AML is supported by both projects
- Imperfection models
 - A set of models is being developed for the ILC
 - CERN is contributing
- Interfaces
 - E.g. beam model to allow use of chain of codes

Common Codes

- A number of codes is needed
 - Tracking and correction procedures (too many, but more detail needed)
 - Background and losses (about OK, more benchmarking and more details may be needed)
 - Beam-beam (about OK, more detail needed)
- Benchmarking of codes is essential
 - Need to have at least two
 - Very time consuming
 - In particular creates a competition between more results and more certain results
- In this area strong collaboration already exists

Common studies

• For ILC a supporting second study is required for all critical results

- Will do the same for CLIC at some point

- Serious work is needed to establish specifications for hardware
 - Many questions to be answered day to day
 - Seems project specific
- Seems reasonable to work together on the supporting studies

Less tight schedule

• Common workshops would be a first step

Specific Studies

- Damping ring
 - Alignment and tuning exist for ILC and CLIC
 - Benchmarking could be of interest (also ATF)
 - Electron cloud
 - Benchmarking of codes for specific cases could be interesting
 - Fast beam-ion instability
 - benchmarking
- RTML
 - Design for CLIC needs completion
 - Collaboration between ILC and CLIC exists on BC alignment for ILC
 - Should be extended to cover CLIC

Specific Studies (cont.)

- Main Linac
 - Strong contributions from CLIC to ILC
 - Would welcome contributions to CLIC
- BDS
 - Correction algorithm exist for ILC
 - Should be applied to CLIC
 - A correction algorithm is being developed for CLIC
 - Can be applied to ILC to serve as supporting study
- Luminosity measurement
 - A fast measurement is important for both projects
 - The luminosity spectrum reconstruction is important