

Università degli Studi di Milano

Drell-Yan processes at the LHC

Alessandro Vicini University of Milano, INFN Milano

CERN, February 22nd 2008

with: C. M. Carloni Calame, G. Montagna, O. Nicrosini, G. Balossini, F. Piccinini, M. Moretti, M. Treccani

papers:CMCC, GM, ON, AV:JHEP 0612:016 (2006),JHEP 0710:109 (2007)workshop proceedings:hep-ph/0604120 (Les Houches, Physics at TeV colliders 2005)
arXiv:0705.3251 (TeV4LHC: top and EVV working group)ongoing workshop:Les Houches, Physics at TeV colliders 2007

Alessandro Vicini - University of Milano

Outline

- accuracy goals
- HORACE : Charged and Neutral Current Drell-Yan photon induced subprocesses with MRST2004QED
- combining QCD and EW radiative corrections gauge boson rapidity, lepton pseudorapidity, charge asymmetry other observables
- uncertainties due to the pdf (CTEQ6.1 / MRST2001E, CTEQ6.5 / MRST2006)

distributions useful to constrain the proton *pdfs*:
 gauge boson rapidity charged lepton pseudo-rapidity

charge asymmetry

- distributions useful to constrain the proton *pdfs*: gauge boson rapidity charged lepton pseudo-rapidity charge asymmetry
- NLO-QCD corrections and initial-state multiple gluon emission represent the bulk of the radiative corrections
- in some cases NNLO predictions available (tentative accuracy benchmark)

- distributions useful to constrain the proton *pdfs*: gauge boson rapidity charged lepton pseudo-rapidity charge asymmetry
- NLO-QCD corrections and initial-state multiple gluon emission represent the bulk of the radiative corrections
- in some cases NNLO predictions available (tentative accuracy benchmark)
- several higher-order corrections induce effects at the few per cent level on the distributions, comparable to the NNLO corrections, which may have an impact on the extraction of the *pdf*
 - different QCD resummations and matching (e.g. Herwig vs Pythia shower; Resbos soft-gluon resummation a la CSS)
 - O(α) EW corrections
 - multiple-photon radiation via PS
 - mixed QCD-EW effects
 - precise determination of the detector acceptances

- distributions useful to constrain the proton *pdfs*: gauge boson rapidity charged lepton pseudo-rapidity charge asymmetry
- NLO-QCD corrections and initial-state multiple gluon emission represent the bulk of the radiative corrections
- in some cases NNLO predictions available (tentative accuracy benchmark)
- several higher-order corrections induce effects at the few per cent level on the distributions, comparable to the NNLO corrections, which may have an impact on the extraction of the *pdf*
 - different QCD resummations and matching (e.g. Herwig vs Pythia shower; Resbos soft-gluon resummation a la CSS)
 - O(α) EW corrections
 - multiple-photon radiation via PS
 - mixed QCD-EW effects
 - precise determination of the detector acceptances
- the uncertainties due to the experimental errors on the data used to extract the *pdfs* set the scale of relevance of new missing higher order corrections

- distributions useful to constrain the proton *pdfs*: gauge boson rapidity charged lepton pseudo-rapidity charge asymmetry
- NLO-QCD corrections and initial-state multiple gluon emission represent the bulk of the radiative corrections
- in some cases NNLO predictions available (tentative accuracy benchmark)
- several higher-order corrections induce effects at the few per cent level on the distributions, comparable to the NNLO corrections, which may have an impact on the extraction of the *pdf*
 - different QCD resummations and matching (e.g. Herwig vs Pythia shower; Resbos soft-gluon resummation a la CSS)
 - O(α) EW corrections
 - multiple-photon radiation via PS
 - mixed QCD-EW effects
 - precise determination of the detector acceptances
- the uncertainties due to the experimental errors on the data used to extract the *pdfs* set the scale of relevance of new missing higher order corrections
- need of a combination QCD+EW at the event generator level for precision studies at the W,Z resonances to accurately constrain the pdfs

Alessandro Vicini - University of Milano

Drell-Yan Charged and Neutral Current processes in HORACE

C.M.Carloni Calame, G.Montagna, O.Nicrosini, A.Vicini

- http://www.pv.infn.it/hepcomplex/horace.html
- true, fully exclusive event generator events saved in a Les Houches compliant form interfaced to LHAPDF package easy to interface to QCD showering programs like HERWIG or PYTHIA
- exact $O(\alpha)$ EW corrections

virtual corrections (EW Sudakov logs) real bremsstrahlung corrections (radiative return, shape of resonance) photon-induced processes (possible with MRST2004QED) matched with

multiple photon radiation

QED Parton Shower describing photon emission in LL approximation (initial and final state)

in progress: inclusion of 2-loop EW Sudakov logs

Alessandro Vicini - University of Milano

W-rapidity and lepton pseudo-rapidity distributions (LHC)

- (flat) correction factor ranges from -2% (W) to -4% (lepton)
- of the same order of present NNLO-QCD uncertainty

The partonic process $q\bar{q} \rightarrow l^+ l^-(1\gamma)$ at $\mathcal{O}(\alpha)$

Alessandro Vicini - University of Milano

Z invariant mass distribution

 huge radiative corrections below the Z peak (final state radiation)

- in the large mass tail, large negative corrections (EW Sudakov logs)
- not negligible effect of (tree-level)

Z observables: Photon-induced processes effects (MRST2004QED)

not negligible effect of the photon-induced processes:
 new partonic subprocesses
 positive contribution which partially compensates
 the negative EW corrections

Combining QCD and EW corrections

in collaboration with C. M. Carloni Calame, G. Balossini, G. Montagna, O. Nicrosini, F. Piccinini, M. Moretti, M. Treccani

- First attempt: combination of soft-gluon resummation with final state QED corrections Q.-H. Cao and C.-P. Yuan, Phys. Rev. Lett. **93** (2004) 042001 ResBos-A
- Additive combination of QCD and EW corrections:

$$\left[\frac{d\sigma}{d\mathcal{O}}\right]_{QCD\oplus EW} = \left\{\frac{d\sigma}{d\mathcal{O}}\right\}_{QCD} + \left\{\left[\frac{d\sigma}{d\mathcal{O}}\right]_{EW} - \left[\frac{d\sigma}{d\mathcal{O}}\right]_{Born}\right\}_{HERWIG\ PS}$$

Combining QCD and EW corrections

in collaboration with C. M. Carloni Calame, G. Balossini, G. Montagna, O. Nicrosini, F. Piccinini, M. Moretti, M. Treccani

- First attempt: combination of soft-gluon resummation with final state QED corrections Q.-H. Cao and C.-P. Yuan, Phys. Rev. Lett. **93** (2004) 042001 ResBos-A
- Additive combination of QCD and EW corrections:

$$\left[\frac{d\sigma}{d\mathcal{O}}\right]_{QCD\oplus EW} = \left\{\frac{d\sigma}{d\mathcal{O}}\right\}_{QCD} + \left\{\left[\frac{d\sigma}{d\mathcal{O}}\right]_{EW} - \left[\frac{d\sigma}{d\mathcal{O}}\right]_{Born}\right\}_{HERWIG\ PS}$$

- *QCD* = ALPGEN (with CKKM-MLM Parton Shower matching), ResBos-CSS, MC@NLO, FEWZ, MCFM
- EW = HORACE interfaced with HERWIG QCD Parton Shower

NLO-EW corrections convoluted with QCD PS \Rightarrow inclusion of $\mathcal{O}(\alpha \alpha_s)$ terms not reliable when hard non collinear radiation is important

•Beyond the additive approximation, a full 2-loop $\mathcal{O}(\alpha \alpha_s)$ calculation is needed

see: J.H. Kühn, A.Kulesza, S.Pozzorini, M.Schulze, hep-ph/0703283 W. Hollik, T.Kasprzik, B.A. Kniehl, arXiv:0707.2553

Monte Carlo tuning

Monte Carlo	ALPGEN	FEWZ	HORACE	ResBos-A
$\sigma_{ m LO}$ (pb)	906.3(3)	906.20(16)	905.64(4)	905.26(24)

Table: MC tuning at the Tevatron for the LO cross section of the process $p\bar{p} \rightarrow W^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$, using CTEQ6M with $\mu_R = \mu_F = \sqrt{x_1 x_2 s}$

Monte Carlo	ALPGEN	FEWZ	HORACE
$\sigma_{ m LO}$ (pb)	8310(2)	8304(2)	8307.9(2)

Table: MC tuning at the LHC for the LO cross section of the process $pp \to W^{\pm} \to \mu^{\pm} \nu_{\mu}$, using MRST2004QED with $\mu_R = \mu_F = \sqrt{p_{\perp,W}^2 + M_W^2}$

Monte Carlo	$\sigma_{ m NLO}^{ m Tevatron}(m pb)$	$\sigma_{\rm NLO}^{\rm LHC}({\rm pb})$
MC@NLO	2638.8(4)	20939(19)
FEWZ	2643.0(8)	21001(14)

Table: MC tuning for MC@NLO and FEWZ NLO inclusive cross sections of the process $p_p^{(-)} \rightarrow W^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$, with CTEQ6M (Tevatron) and MRST2004QED (LHC)

★ After appropriate "tuning", and with same input parameters and cuts, Monte Carlos agree at ~ 0.1 % level (or better)

Event selection

W observables: W rapidity and lepton pseudo-rapidity distribution

Both QCD and EW corrections are quite flat partial cancellation +15 -3 %

The deltas are defined in unit (Born+PS)

Alessandro Vicini - University of Milano

CERN, February 22nd 2008

Charge asymmetry

$$A(\eta_{\mu}) = \frac{d\sigma^{+}/d\eta_{\mu} - d\sigma^{-}/d\eta_{\mu}}{d\sigma^{+}/d\eta_{\mu} + d\sigma^{-}/d\eta_{\mu}}$$

Charge asymmetry

 $\frac{d\sigma^+/d\eta_\mu - d\sigma^-/d\eta_\mu}{d\sigma^+/d\eta_\mu + d\sigma^-/d\eta_\mu}$ $A(\eta_{\mu})$

good agreement of MC@NLO and ALPGEN

Comparison only of the shapes

The asymmetry is smaller than at the Tevatron and always negative

 $O(\alpha)$ EW effects are moderate in size and well under control. Multiple photon emission is negligible

Alessandro Vicini - University of Milano

CERN, February 22nd 2008

W: uncertainties due to the pdfs

LHC, MC@NLO, CTEQ6. I

-6

30

40

50

 p^{μ}_{\perp} (GeV)

60

70

Alessandro Vicini - University of Milano

CERN, February 22nd 2008

W: uncertainties due to the pdfs LHC, MC@NLO, MRST2001E

The spread is about 2 times smaller w.r.t. CTEQ because of the different values of the tolerance parameter

Alessandro Vicini - University of Milano

CERN, February 22nd 2008

W: uncertainties due to the pdfs

LHC, MC@NLO

MRST2001

W: uncertainties due to the *pdfs* LHC, MC@NLO

Large tail of the transverse mass distribution

Sensitive to the large-x part of the pdf

Alessandro Vicini - University of Milano

CERN, February 22nd 2008

Combining QCD EW corrections in the Neutral Current channel (Les Houches Physics at TeV colliders 2007 workshop)

Very preliminary results on the large invariant mass tail A complete study, including the Z resonance, in progress

Conclusions

- The event generator HORACE contains the state-of-the-art of the EW corrections to the Drell-Yan process (both CC and NC)
- The combination of QCD and EW corrections at the event generator level provides a realistic description of the processes: full analysis completed in the CC sector, in progress in the NC sector
- Several purely QCD, purely EW and mixed QCD-EW classes of corrections induce effects on the observables at the few per cent level which can be relevant for a precise determination of the *pdf* from Tevatron/LHC data
- These effects are comparable with the NNLO-QCD theoretical uncertainty and with the error bands due to the experimental data