Average of DIS cross section

S Glazov, DESY.

1

- Definition of an average.
- χ^2 forms and biases.
- HERA average results.

Definition of an Average

Consider an experiment which provides set of statistically uncorrelated measurements M_i^e with systematic uncertainties α_j^e . The PDF for M_i^{true} and α_j^{true} can be then represented as

$$\chi_e^2(M_i^{true}, \alpha_j^{true}) = \sum_i \left(\frac{M_i^{true} - [M_i^e + \sum_j \beta_{ij}^e \alpha_j^{true}]}{\sigma_i^e} \right)^2 + \sum_j (\alpha_j^{true})^2.$$
(1)

where β_{ij}^{e} is sensitivity of the measurement at *i* to the systematic source *j*. For many experiments,

$$\chi_{tot}^2(M_i^{true}, \alpha_j^{true}) = \sum_e \chi_e^2(M_i^{true}, \alpha_j^{true}).$$
(2)

We define as an "average" of the experiments as the following representation of χ^2_{tot} :

$$\chi_{tot}^{2}(M_{i}^{true},\gamma_{j}^{true}) = \chi_{ave}^{2} + \sum_{i} \left(\frac{M_{i}^{true} - [M_{i}^{ave} + \sum_{j} \beta_{ij}^{ave} \gamma_{j}^{true}]}{\sigma_{i}^{ave}} \right)^{2} + \sum_{j} (\gamma_{j}^{true})^{2}$$
(3)

where $\gamma_j^{true} = \sum_k A_{jk} (\alpha_k^{true} - \alpha_k^{ave})$ and A is an orthogonal matrix.

Definition of an Average II

In other words and average of experiments has the χ^2 form of a single experiment with the set M_i^{ave} corresponding to all M_i^e but different uncorrelated systematic sources. One can observe:

- An average exists (by checking coefficients in front of $M_i^{true}, \alpha_j^{true}$ in Eq.2 vs Eq.3)
- It is diagonal in M_i^{true} (since Eq.2 contains no off-diagonal terms).
- M_i^{ave} and α_k^{ave} correspond to the minimum of Eq.2, χ^2_{ave} is the value at the minimum.

If all $\beta_{ij}^e = 0$, this definition coincides with a standard average. Other good properties of an average are preserved: $M_i^{ave}, \sigma_i^{ave}, \sigma_i^{ave \ tot} = \sqrt{(\sigma_i^{ave})^2 + \sum_j (\beta_{ij}^{ave})^2}$ of 3 experiments does not depend on averaging sequence, etc.

Since the form of Eq.1 is simple, finding of the minimum is not hard as well.

Bias to Smaller X-section values

Most of the systematic uncertainties of the X-section measurements, correlated and uncorrelated are given in terms of relative errors. In absolute space, measurement with smaller value has smaller uncertainty \rightarrow bias.

Consider 2 measurements of X, one at $X + X\beta$ another at $X - X\beta$, both with the same relative uncertainty $\delta = \sigma/X$. An error weighted average of the two measurements returns

$$\bar{x} = X \frac{1 - \beta^2}{1 + \beta^2},$$

which for $\beta = 5\%$ corresponds to 0.5% bias.

χ^2 definitions and biases

A way to avoid the bias is to replace simple quadratic in M^{true} and α^{true} definition of the χ^2

$$\chi^{2}(M_{i}^{true},\alpha_{j}^{true}) = \sum_{i} \frac{\left[M_{i}^{true} - \left(M_{i} + \sum_{j} \beta_{ij} \alpha_{j}^{true}\right)\right]^{2}}{\sigma_{i}^{2}} + \sum_{j} \left(\alpha_{j}^{true}\right)^{2}$$
(4)

to:

$$\chi^{2}(M_{i}^{true},\alpha_{j}^{true}) = \sum_{i} \frac{\left[M_{i}^{true}\left(1 + \frac{1}{M_{i}}\sum_{j}\beta_{ij}\alpha_{j}^{true}\right) - M_{i}\right]^{2}}{\left[M_{i}^{true}\frac{\sigma_{i}}{M_{i}}\right]^{2}} + \sum_{j} \left(\alpha_{j}^{true}\right)^{2},$$
(5)

where all relative errors are translated to absolute around the average value.

Bias is studied using toy MC techniques. The main contribution comes from global normalization errors. Average for χ^2 definition of Eq. 5 is found iteratively starting from Eq. 4.

Average of H1 and ZEUS for $Q^2 = 35 \text{ GeV}^2$ (Eq. 4)

Average of H1 and ZEUS for $Q^2 = 35 \text{ GeV}^2$ (Eq. 5)

Preliminary combination of H1 and ZEUS

- NC and CC, e[±]p data combined simultaneously. This allows to follow updates of correlated systematic uncertainties.
- $E_p = 820$ GeV data corrected to $E_p = 920$ GeV data. Correction may be restricted to y < 0.35 only.
- Data is interpolated to a common grid. Good agreement of interpolation factors for H1 and ZEUS parameterizations. In future, we will use the fit to the average for the interpolation.
- Global normalizations are treated as multiplicative. For other systematic uncertainties, both assumptions are considered, added as systematic uncertainty
- Correlation between various H1 and ZEUS systematic sources is considered. Largest effect from assumption on γp background and hadronic energy scale (common MC models). Added as extra uncertainties.

HERA I e⁺p Neutral Current Scattering - H1 and ZEUS

 $\chi^2/dof = 510/599$

Experiments agree too well (over-consistency). That is related to conservative estimate of uncorrelated systematic uncertainties.

 χ^2 average data vs theory removes over-consistency of the data, provides more stringent test.

Combination of HERA data

 $Q^2\,/\,GeV^2$

Experiments cross-calibrate each other. Uncertainties on systematic sources are strongly reduced for unique kinematic dependences, if the other experiments has better precision in a similar phase space.

- Averaging provides a model independent tool to study consistency of the data.
- Over-consistency or inconsistency of the data is separated from the data to theory comparison.
- Hessian or Offset methods can be applied for error estimation after the data is combined.
- A systematic study of effects of correlations between different datasets.

Preliminary results based on published H1/ZEUS data are available since last summer. Next step is to publish the combined data tables...

 \rightarrow Combined HERA data should allow for better estimation of PDF uncertainties, more strict constraint to the theory.