Data Networks

Introduction to Networking

Dan Octavian Savu & Stefan Stancu

CERN

ISOTDAQ 2014, Budapest

Outline

- Introduction
 - Networking basics
 - OSI reference model
- Technologies and protocols
 - Ethernet
 - Internet Protocol (IP)
 - Routers and routing
- Network monitoring
- Software defined networking

What is a network?

- A *network* is simply two or more computers connected together so they can exchange information. At the same time it can be a complex interconnected system of objects and people (Internet)
- **End-host devices** are hosts attached to a network
- A **source host** is the place where the data originally comes from
- A *destination host* is the place where the data is being sent to
- **Networking devices** are waypoints along paths for data to travel along
- Links are direct data paths between adjacent devices
- A route is the path between any two network points

What is a network?

Why do we need a network?

- Sneaker Net
 - Inefficient data communication;
 - Many copies of the same file;
 - Reliability, scalability, flexibility... issues.

- (High speed) networks connecting all hosts help address slow transmission of information
- Interconnected datacenter servers help minimize redundant copy of files
- File sharing, resource sharing, communication & collaboration, group organization, remote access, data backups etc

Network types

- Networks have different varieties to suit different purposes and needs
- LAN (small size, high speed, physical proximity)
- WAN (long distance, lower data transfer rates)
- MAN (metropolitan area network)
- PAN (immediate space around a person)
- SAN (connecting storage farms, high speed)
- VPN (private network extension across a shared or a public network)

Network structure

- The structure of a network is known as the topology
 - Physical = The way the network is cabled
 - Logical = The way devices use the network to communicate

Bus Topology

Ring Topology

Star Topology

Partial Mesh Topology

Hierarchical Topology

Fully Mesh Topology

Network communication

- One-to-one
- One-to-all
- One-to-many

Broadcast

Multicast

OSI Model. Divide et impera.

OSI Model. Divide et impera.

All People Seem To Need Data Processing

Why layers in OSI?

- Simplifies understanding of networking
- Breaks networking tasks into smaller, manageable, chunks
- Allows for platform independence
- Provides a standard for networking manufactures
- Easier to determine the correct networking protocol required to connect
- Problem investigation is easier and debugging time is shortened

Outline

- Introduction
 - Networking basics
 - OSI Model
- Technologies and protocols
 - Ethernet
 - IP Protocol
 - Routers and routing
- Network monitoring
- Software defined networking

Ethernet. Reliable since 1973.

- Created at Xerox in 1973, released as an open standard in the early 80s
- Later modified to comply with the OSI model, ratified as IEEE 802.3 in 1985
- Ethernet has evolved significantly since then:
 - Proved flexible as a technology, able to upgrade to new media and faster data transmission speeds.
 - 10Gig Ethernet ratified as IEEE 802.3ae
 - Optical fiber has joined copper as media of choice for the IEEE 802.3 family
- Flexibility came through the simplicity of Ethernet's structure
- Ease of installation and maintenance

Ethernet

Basic Ethernet frame

Ethernet. Switch

Basic Ethernet frame

IP. (Un)reliable since 1974.

- Connectionless, best effort protocol
- Designed to be encapsulated into layer 2 protocols, such as Ethernet
- Initially created by Vint Cerf and Bob Kahn in 1974
- IPv4 described in RFC 791 (1981) hyperlink
- Defines a hierarchical (logical) addressing scheme capable of connecting all the hosts in the world (Layer 3)
- Routes packets towards destination using best available path, with the help of routing protocols (Layer 3)

IP (Addressing)

- 32bit address space (IPv4)
- Hierarchical addressing (similar to postal addressing)
- Global visibility
- ARP (Address Resolution Protocol) used to map an IP address with an Ethernet MAC address (layer 2, local visibility)

NETWORK				SUBNET	HOST
172		16	.	122	204
8 Bits 1 Byte	*	-8 Bits -	>	8 Bits 1 Byte	 ←8 Bits ←

Routers

- Connect together separate networks, sometime of various networking technologies (ex: Ethernet and DSL)
- Make path determination decision based upon logical addresses (such as IP). The process is called routing.
- Layer 3 networking devices
- Routing and switching are similar concepts, but are in different layers:
 - Routing occurs in Layer 3, uses IP
 - Maintains routing tables (IP network addresses)
 - Maintains ARP tables (IP to MAC mappings)
 - Switching occurs in layer 2, uses MAC
 - Maintains switching tables (MAC addresses)

Routing

The **process of selecting paths** in a network along which to send network traffic, based upon logical addresses (such as IP).

A routing protocol allows one router to share information with other routers regarding known network paths as well as its proximity

- Static routing
- Dynamic routing
 - Distance Vector
 - Link State

Routing. Dynamic routing

Distance Vector Protocols

- Each router tell its neighbors about its view over the network
- Routes are advertised as a vector of distance and direction.
- Routers do not have knowledge of the entire path to a destination

Link State Protocols

- Each router tells the world about its neighbors
- Routes are computed based on the network connectivity map (topological database)
- Routers have knowledge of the entire path to a destination

Outline

- Introduction
 - Networking basics
 - OSI Model
- Technologies and protocols
 - Ethernet
 - IP Protocol
 - Routers and routing
- Network monitoring
- Software defined networking

Network Monitoring. SNMP

- A standard protocol for managing devices on IP networks (switches, routers, computers etc);
- Exposes management data in the form of variables on the managed systems. These variables are then queried;
- Used to gather device-based or port-based statistics (traffic volume, errors, packets, discards, temperature etc);

Network Monitoring. sFlow & NetFlow

- Network monitoring technology to gather flow-related statistics;
- Can track the source and destination for packets that passes through an interface;

- sFlow compute statistics based on a sampling mechanism;
- NetFlow keeps a record for every flow. If needed, it can also use sampling.

Software defined networking. OpenFlow

Software defined networking. OpenFlow

- An open protocol to remotely add/remove flow entries;
- Allows the path of network packets through a network to be determined by a software running on a separate server, called a controller
- The controller run a NOS (Network Operating System) that allows user applications to control network behavior.
- Allow researchers to run routing experiments in their network;
- Already supported on several routers (ex: HP Procurve)

The show must go on ...

Data Networks

Networking for Data Acquisition

Dan Octavian Savu & Stefan Stancu

CERN

ISOTDAQ 2014, Budapest

Data Acquisition uses networks

- Detector
 - Measure physical phenomena
- Read-Out
 - Digitize and perform basic processing
 - Possibly data buffers
 - Interface to network
- Network
 - Connect all read-outs to analysis computers
 - Allows computers to collect data from all sources
- Computer(s)
 - Interface to network
 - Collect data from all sources
 - Analyze and filter data
 - Store data

Networks for Data Acquisition

Outline

Transport layer

- UDP
- TCP

- Linux networking optimizations
- DAQ Networks for large experiments
- DAQ application design: push vs. pull

Network Technology Choice

- Scalability
- Reliability
- Low cost
- Expected life-time
- Provider's health

- OSI Layer-2
- Largely used in the industry
- Many providers
- Ubiquitous
- Layering allows to put anything on top of it

Ethernet

Networks for Data Acquisition

Outline

Transport layer

Linux networking optimizations

DAQ Networks for large experiments

DAQ application design: push vs. pull

Major Transport Protocols: TCP and UDP

- Unreliable Datagram Protocol (UDP)
 - Unreliable but simple
 - Connectionless
 - RFC 768
 - http://tools.ietf.org/html/rfc768

Connection oriented protocol

- Flow control
- Lossless
- RFC 793
 - http://tools.ietf.org/html/rfc793

Application
Presentation
Session
Transport
Network

Data Link

UDP/IP (over Ethernet)

Ethernet data (MTU:1500/9000)

- UDP immediately sends messages
 - Message size decided by application
 - UDP is not MTU aware
 - IP will take care of putting data in MTUs
- Payload < MTU
 - IP: one frame
- Payload > MTU
 - IP will fragment: multiple frames

TCP/IP (over Ethernet)

Ethernet data (MTU:1500/9000)

20 byte 8 byte

IP(v4) header TCP header TCP Payload

- TCP
 - Is MTU aware
 - Nagle Algorithm
 - Buffers data for a short while before sending it
 - Message size optimized by TCP
- Payload < MTU
 - Nagle may coalesce data for you

- Payload > MTU
 - TCP will segment: multiple frames
 - No IP fragmentation

Encapsulation – Efficiency

$$Efficiency = \frac{Payload}{Payload + Overhead}$$

Encapsulation	Efficiency (100 byte)	Efficiency (1 byte)
Ethernet	72%	1.2%
UDP/IP/Eth	60%	1.2%
TCP/IP/Eth (Nagle algo)	> 56%	> 1.2%

TCP: How it works

Normal transmission

Packet never acknowledged
Time out

Packet lost in a sequence 3 duplicated ACKS

TCP: Reliability Vs Performance

- Cause of packet loss:
 - Congestion

2014

- Discards and errors
- Faulty hardware or drivers
- Congestion is detected
 - If time out happens while no ACK received
 - If multiple duplicate ACKs received
- Congestion avoidance: adapt data rate to the traffic conditions

TCP Performance with Packet loss

MTU = 9000 bytes Tools: netem and iperf 1 GbE link Binary Increase Congestion control algorithm

Networks for Data Acquisition

Outline

Ethernet

- TCP

- DAQ Networks for large experiments
- DAQ application design: push vs. pull

From theory to practice

Kernel – NIC interaction

Send

- Data in memory (SKB)
- Descriptor to TX ring
- NIC fetches data via DMA
- NIC interrupts when finished sending

Receive

- NIC puts data in memory (SKB) via DMA
- NIC puts descriptor in RX ring
- NIC interrupts
- CPU fetches the SKB and frees up the RX ring descriptor

Interrupt coalescing

- Hardware interrupt has a cost
 - Context switch of a CPU
 - Saving and loading registers and memory maps, updating various tables and list
 - Happens every time an Ethernet frame is received?
 - 1538 bytes -> 12304 bits -> 1 frame every 1.23 μs @ 10 GbE
- Lower the rate with interrupt coalescing
 - 1 interrupt for several frames
 - Do not add too much latency in case of low traffic

- Careful with the ring buffer size
 - Packets are discarded if the buffer is full

Jumbo Frames

- Improve max throughput (encapsulation overhead)
 - 94% @ 1500 MTU
 - 99% @ 9000 MTU

Reduce the frame rate

- Lower interrupt rate
- Less data dis/re assembling for the CPU

Tests performed on a Broadcom NIC and an 8 core Intel Xeon processor

Considering efficiency at all stages

- Higher Layer Processing consists of <u>numerous</u> tasks:
 - Checksum calculations
 - Data copies
 - Header stripping or adding
 - Protocol logic implementation
 - Reordering
 - Reassembling
 -
- High bandwidth impact on CPU consumption
 - 100% of one 2.33 GHz core for a bandwidth of about 5 Gb/s (without any tuning ☺)
- Trying to outsource these to hardware controllers

NIC Offloading

TOE: export processing to hardware controllers

Purpose: free host CPU cycles

- TCP Offload Engine: TCP/IP stack processed by the network device
 - Checksum computing
 - Transport protocol segmentation
- A TOE capable device will offer the OS a much larger MTU (SKB size)
 - TSO = TCP Segmentation Offload (send)
 - the NIC takes care of segmenting the large SKB
 - LRO = Large Receive Offload (receive)
 - the NIC assembles data from multiple frames/ segments into a large SKB

Basic optimizations for DAQ

Hosts

- Mainly for reception side
 - Surprisingly at first side, reception is the more resource consuming side
- Provide large kernel buffers and large socket buffer for the application
 - Machines can easily cope
- Tune IRQ moderation

Network devices

- Usually clean network with an unidirectional dataflow
- Enable jumbo frames on all port to improve bandwidth
- Maximize buffers
 - Packet loss has a big impact on performance (see previous TCP slide)
 - Latency is a 2nd order concern for DAQ

Networks for Data Acquisition

Outline

Network technology choice

Transport layer

Linux network stack & optimizations

DAQ Networks for large experiments

DAQ application design: push vs. pull

DAQ Network for a large experiment

ATLAS DAQ Network

- LHC DAQ systems use O(1000) nodes
 - too large for a single device
- Typical multi-layer architecture
 - Aggregation layer
 - Core layer
 - De-aggregation / fan-out / edge
- Simple, reliable and fast
 - static routing
 - layer 2 switching
 - QoS (high priority for important traffic)

Networks for Data Acquisition

Outline

Network technology choice

Transport layer

Linux network stack & optimizations

DAQ application design: push vs. pull

DAQ – push design

Push

- Data SRCs simultaneously send data to a collector
- Funnel-in effect on the switch
 - Packets need to be buffered before being sent to the Collector
 - The more sources, the worse
- Advantages:
 - Simple design of the data sources
- Disadvantages
 - Rely on network buffers for not losing data
 - Collector must cope with the rate

DAQ – pull design

Pull

- Data SRC buffer data and provide it on request
- Controlled funnel-in effect on the switch
 - Collector can limit the number of outstanding requests
 - Not affected by the number of sources

- Advantages:
 - Full control of network traffic
 - Collector asks as much as it can handle
 - Collector can slow down in case of loss detection
- Disadvantages
 - Data sources complexity:
 - Buffering
 - Request-reply protocol implementation

Conclusion

Networking basics

- OSI Model is your friend!
- Ethernet is used to connect hosts together
- IP is used to connect networks together
- SNMP and sFlow/NetFlow are used to monitor the network

DAQ networks

- Only scratched the surface of a few standard or new technologies
- Many other protocols exist:
 - less known than TCP and UDP
 - very interesting for DAQ
- Numerous other optimizations

New investigation

- SDN: you can build your custom DAQ network
 - Any topology (don't care about loops anymore, like with standard Ethernet)
 - Engineer your flows as you want
 - Main limitation: OpenFlow rules table size in HW devices
- 40/100 GbE
- InfiniBand

References

- Wikipedia
- IETF RFCs
- « man » pages
- Conference proceedings and journals

- INTEL Corp. Interrupt Moderation Using Intel® GbE Controllers. http://download.intel.com/design/network/applnots/ap450.pdf, 2007.
- 2. Wenji Wu. The Performance Analysis of Linux Networking Packet Receiving http://lss.fnal.gov/archive/2006/pub/fermilab-pub-06-406-cd.pdf
- 3. Sequence diagrams for TCP/IP stack and many protocols http://www.eventhelix.com/RealtimeMantra/Networking/
- 4. 10 Gigabit Ethernet Association http://www.10gea.org/tcp-ip-offload-engine-toe.htm
- 5. Binary Increase Congestion Control for Fast, Long Distance Networks http://netsrv.csc.ncsu.edu/export/bitcp.pdf

Bck

TCP Throughput over time

Eff-host: From the device to the Kernel

Network devices for DAQ

Core router

Edge switch

- LHC data acquisition systems uses O(1000) ports -> too large for a single device
- Typical architecture
 - Aggregation layer
 - Core layer
 - De-aggregation / fan-out / edge

Top-down dataflow relies on static routing and layer 2 switching

Overview

