The TDAQ System of the MEG Experiment

- The MEG experiment
- requirements for the TDAQ from physics
 - DAQ choice
 - requirements for the trigger
- An FPGA based trigger
 - algorithm implementation
- TDAQ efficiency considerations

PAUL SCHERRER INSTITUT

Luca Galli, PSI e INFN Pisa

Very few words about the MEG experiment

- "Tiny" collaboration
- Search μ ->e γ with 5x10^(-13) sensitivity on the process @Paul Scherrer Institut, Villigen Switzerland
 - prohibited in SM -> new physics?/! (SUSY?)
- positive μ-beam stopped in a thin target (3x10⁷ μ/sec)
 - positron detector
 - non-uniform magnetic field COBRA to bend positrons
 - · tracking with drift chamber modules
 - timing with plastic scintillator slabs read by PMTs (Timing Counter)
 - photon detector
 - Liquid Xenon calorimeter read with PMTs

NFN

Requirements to the TDAQ

- A precision experiment demands for:
 - statistics -> high beam intensity (and associated raw event rate and detector occupancy)
 - electronics to resolve any possible pile-up in detectors
 - use of waveform digitisers, no TDC and QDC
 - resolution -> background suppression
 - development of detector with unprecedented resolutions at signal energy (52.8 MeV)
 - high precision electronics for charge and time measurements
 - stability -> systematics under control
 - the detector stability measured with a redundant set of calibration methods (evolving year by year)
 - trigger system flexible to cope with any experimental requests

FE readout choice: the DRS chip

- The Domino Ring Sampler
 - waveform digitiser developed at Paul Scherrer Institut
 - capacitor array to store the charge from detector signals, each capacitor is a "bin" in our waveform
 - read out with external ADC
 - sampling speed tuneable from 800 MSPS to 5 GSPS
 - memory depth = 1024 bins (from 12.8 µs to 200 ns)
 - time resolution demands for sampling speed greater that 1.5 GSPS - 600 ns memory depth
 - requirement on trigger latency!

The DRS system

- DRS chips in VME boards
 - 32 channel per board
- 5 crates
 - <= 20 boards per crate
 - 640 channels per crate
- Boards read-out with 2eVME protocol
 - 80 MB/s transfer speed

L. Galli, PSI & INFN Pisa 6

Budapest, 01-02-2014

Trigger technology choice PAUL SCHERRER INSTITUT

- The trigger will be a separate system
 - dedicated splitter system to drive signal to both DRS and trigger
- Latency requirements
 - DRS with 1.6 GSPS
 - memory depth of about 600ns
 - ~50 ns are required before the pulse in DRS waveforms for offline processing
 - ~50 ns is a conservative estimate for the trigger signal distribution from the trigger to the DAQ
 - the decision must be taken as fast as 500 ns after the event occurrence
 - at trigger level only fast detectors are used: LXe calorimeter and Timing Counter (plastic scintillator detector)
- Flexibility requirements
 - the system have to cope with any possible experimental needs
 - ...and there are really a lot of!
- FPGA based trigger
 - Xilinx Virtex-II pro FPGA (bought in 2004)
 - algorithm execution frequency to be 100 MHz
 - VME boards
 - the trigger data stored in the data stream for online algorithm calibration and monitoring
 - Multi layer system
 - · transmission with LVDS serialiser-deserialiser, 4.8Gbit/s per connection

- receiving detector data
 equipped with FADC 100MHz, 10 bit
 Interpret data
 Interpret data</l
 - Type2 board

Three layers system

6U VME board

Type1 board

- data processing
- the master issues the trigger signal

Generation Overview of the trigger system

7

Some pictures... trigger boards

Type1

Type2

Type1 6U crate

Type2 9U crate

Data read-out system

Budapest, 01-02-2014

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

Event building

- The raw data are scattered over several VME crate
 - each crate is read-out after any trigger by dedicated CPU that create a fragment
 - all the fragments sent to the main CPU
 - what happens if at a certain point a fragment is loss??
 - · fragment belonging different events are mixed
 - data useless!!

- The solution is the trigger bus: from the trigger to the DAQ crates
 - event number + event code (trigger type)
 - connected via the VME transition cards

Some consideration about DAQ efficiency

- DAQ efficiency is defined as
 - DAQLiveTime x TriggerEfficiency
- This quantity has to be as large as possible in any TDAQ system

- Compromise...
 - milestones! let's start from dead time...

Read-out dead time

INFN

- As a first attempt we used a single buffer read-out
 - the system is in dead time during the read-out of a crate through VME
 - the dead time is dictated by the heaviest crate

 $t_d = \frac{40}{\# \text{ mezzanines/crate}} \times \begin{pmatrix} 0.125 \text{ ms} \\ \# \text{ DMA setup time} \end{pmatrix} \times \frac{40960 \text{ B}/83000 \text{ MB/ms}}{\# \text{ data transfer time}} = 24.7 \text{ ms}$

 the associated DAQ live time is given by the probability to have 0 event during the read-out (trigger rate = 7 Hz, Poissonian event distribution)

 $LT = \exp(-R_{trg} \cdot t_d) \simeq 84\%$

- Requirement for the trigger rate
 - which trigger algorithms can we use?
 - what about the rejection power?

Considerations about trigger algorithms

- Goal: DAQ rate of about 7 Hz
- Detector to be used:
 - LXe calorimeter (photon energy, time and direction)
 - Timing Counter (positron time and hit position)
- Synchronous processing with FPGA
 - algorithms to use 1 CLK cycle per operation (if possible)
 - · registers, adders, subtracters, comparators for simple operations
 - Look Up Tables for more complex operations, for example multiplications
- Final choice
 - photon energy discrimination
 - photon-positron timing
 - photon-positron space correlation
- The discrimination on photon energy plays the lead role
 - take care of online energy reconstruction

This choice is driven by physics and your detector!

L. Galli, PSI & INFN Pisa

- Synchronous sum of the LXe signals
 - the peak of the obtained waveform is the online energy estimate

- the baseline value may differ from channel to channel (remember QDC in lab4)
 - refer the waveform to a common value before the sum stage
- channel calibration with Look Up Table
 - for example in case of PhotoMulTipliers gain and Quantum Efficiency calibration

Fee Implementation of online pedestal subtraction

NFN

Effect of calibration!

- By applying a refined calibration reconstruction improves!
 - better reconstruction -> higher threshold with same efficiency on signal -> lower trigger rate -> higher DAQ Live Time
 - improvement of the DAQ efficiency

• It is important to get the best from the system with the available techniques!

PAUL SCHERRER INSTITUT Run configuration and monitoring

- The trigger system provides the DAQ with 32 different selection algorithms
 - the trigger type are order with a priority
 - pre-scaling factors
 - · programmable fraction of minimum bias selection in the data stream
 - trigger efficiency studies
 - detector calibration and monitoring
 - physics analysis, normalisation evaluation
- This flexibility is crucial to take under control the detector
 - the run configuration is store in a database
 - · access to the shift crew
 - few default run configuration available
 - is it written together for data to be used in analysis
- GUI to check data quality online
 - events "photographs"
 - · not so precise, sensitive to major problems
- Automatic analysis right after the acquisition to check further the data quality
 - histograms for detector debugging
 - · dead channels, electronic noise...

DAQ efficiency: measurement and optimisation

INFN

- First run in 2008: DAQ efficiency = 55%
 - "preliminary" trigger system configuration
 - first version of online reconstruction algorithm
 - · calibration not optimised yet
- The DAQ (trigger) efficiency measured at the end of data taking
 - the selection has to be trained with data
 - the higher Live Time is NOT the experimental working point
 - but the Live Time is measured online...
- How to find the best working point?
 - trigger "simulation" with real data
 - modify selection and predict the trigger rate and efficiency with no algorithm improvement
 - improve the selection algorithms
 - for example improve calibrations!
- By algorithm refinement we reached 75% DAQ efficiency

Is it possible to improve further?

- Many possibilities
 - reduce dead time read out
 - zero-suppression of FPGA to neglect the read-out of "empty" channels
 - this is dangerous with an homogeneous calorimeter...
 - Use 2eVME D64 read-out (160 MB/s instead of 80 MB/s)
 - you have to foreseen it at design phase... :(
 - unfortunately you usually miss something in your original design
 - refined selection algorithms
 - current latency of the order of 500 ns, DRS running at 1.6GSPS
 - a more complex algorithm would lead to a larger latency... :(
 - *Multiple-buffer read-out!*
 - data stored in circular memories on VME boards
 - during a buffer read-out the next buffer is filled (if free...)
 - busy released immediately!
 - this can be implanted in FPGA in any time... if you have enough resources!

Busy handling

- Read-out when one of the buffer busy is 1
- The system is busy when all the 3 buffers are full

And DAQ Live Time?

- The system is busy when all the 3 buffers are filled during while you are reading
 - the read out time is unchanged
 - ~25ms
 - the LiveTime fraction can be evaluated

$$LT = e^{-R_{trg} \cdot t_d} \cdot \left[1 + R_{trg} \cdot t_d + (R_{trg} \cdot t_d)^2/2!\right]$$

- it is close to 99% even with a trigger rate close to 14 Hz
 - there is room to relax the trigger condition and improve also the trigger efficiency!

PAUL SCHERRER INSTITUT

NFN

Conclusions

- A TDAQ system to be designed on top of an experiment
 - the experimental needs drive the choice of the technology
- Even when the technology is decided a lot of compromise, in this case
 - Waveform digitiser with lat least 1.6 GSPS sampling speed
 - background rejection requires the best timing possible
 - trigger latency to be least than 500 ns
 - trigger based FPGA
 - system flexibility, for example detector calibration
 - calibration procedures may changes during the run... and you do want to be the reason why a new calibration procedure will not be used ;)
- Once your TDAQ is built you have to get the best performance
 - use all the accessible handles
 - this is just an example but can help