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=1~ Very few words about the MEG experiment INFN
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h‘ /e “Tiny” collaboration

Liechtenste

o ownzerland "9 Search p->ey with 5x107(-13) sensitivity on
the process @Paul Scherrer Institut, Villigen
Switzerland
e prohibited in SM -> new physics?/! (SUSY?)

~60 physiciéts from 12 institutes from 5 countries
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e positive y-beam stopped in a thin target

0% mf;=105.66 MeV
- )

(83x1077 u/sec)
F,=52.83 MeV o | . positron detector

« non-uniform magnetic field COBRA to bend
positrons

tracking with drift chamber modules

timing with plastic scintillator slabs read by
PMTs (Timing Counter)

photon detector
+ Liquid Xenon calorimeter read with PMTs
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1" Requirements to the TDAQ
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e A precision experiment demands for:

sianal - Statistics -> high beam intensity (and
g_ _ associated raw event rate and detector
t position occupancy)
Y spectrum

£ from p decay : + electronics to resolve any possible pile-up in
- very steep at ] detectors
- Kinematical edge '

Differential Branching Ratio .f-‘:'

use of waveform digitisers, no TDC and QDC

e resolution -> background suppression

A « development of detector with unprecedented
f% | %& resolutions at signal energy (52.8 MeV)

PMT QE & Att. L
Cold GXe

high precision electronics for charge and time
L measurements

x+p>m+n Detector ot e+ S e SR ips .
oo | 3 carater — 0 ) stability -> systematics under control

| —_— « the detector stability measured with a

Cosmic

ray . redundant set of calibration methods (evolving

T radiative decay alignment

e - year by year)

,x’yi‘i Lower beam intensity < 107 -0
‘ “ Is necessary to reduce pile- :’ - ’

e s

Illuminate Xe from

» N |[EE e\ - trigger system flexible to cope with any
Lo \« A few days ~ 1 week to get / transferred by =
\L J

enough statistics

o a9 il - experimental requests
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= FE readout choilce: the '~F~

e The Domino Ring Sampler
\\\\\“l I lI IIII

e waveform digitiser developed at Paul
Scherrer Institut

e

\\\\\\V 177777,

capacitor array to store the charge from
detector signals, each capacitor is a “bin
in our waveform
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« read out with external ADC

sampling speed tuneable from 800

time resolution
MSPS to 56 GSPS contribution by

memory depth = 1024 bins (from 12.8 /s
fo 200 ns)

« time resolution demands for sampling
speed greater that 1.5 GSPS - 600 ns
memory depth

Resolution [ps RMS]

requirement on trigger latency! sampling speed [ GSPS]
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e DRS chips in VME boards

e 32 channel per board

e 5 crates

Ol =k
1= X3LHIA

e <= 20 boards per crate -

« 640 channels per crate

e Boards read-out with
2eVME protocol

e 80 MB/s transfer speed
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-5 Trigger technology choice

® The trigger will be a separate system -~
g9 Input > DRS Output
* dedicated splitter system to drive signal to both DRS and trigger J

E Trigger Output

Test

® Latency requirements
* DRS with 1.6 GSPS

+ memory depth of about 600ns

e ~50 ns are required before the pulse in DRS waveforms for offline processing

NG
. . . . . . . — 2 Sum Output
» ~50 ns is a conservative estimate for the trigger signal distribution from the trigger to the DAQ
* the decision must be taken as fast as 500 ns after the event occurrence

+ at trigger level only fast detectors are used: LXe calorimeter and Timing Counter (plastic scintillator detector)

* Flexibility requirements

* the system have to cope with any possible experimental needs

...and there are really a lot of!

* FPGA based trigger
* Xilinx Virtex-1l pro FPGA (bought in 2004)

+ algorithm execution frequency to be 100 MHz
* VME boards

+ the trigger data stored in the data stream for online algorithm calibration and monitoring
e Multi layer system

+ transmission with LVDS serialiser-deserialiser, 4.8Gbit/s per connection

-
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- Overview of the trigger system /v~
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e Three layers system

LXe front face

. Typel board (216 PHIT)

LXe lateral faces
6U VME board back (216 PMTs) 4 in 1
lat. (144x2 PMTs) 4 in 1

receiving detector data """ #4FITE AN

equipped with FADC N
100MHz, 10 bit bar (30x2 PMTs)

fibers (512 APDs) 8 in 1 -
o TypeZ board o £ FINAL TYPE2

. Drift chambers
- data processing 64 channels

« the master issues the ‘ :
. ) 36 channels P
trigger signal :

Sbomce INTERMEDIATE
FIRST LAYER LAYER
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Some plctures tngger boards mﬁ
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Typel 6U crate

Type2 9U crate

Typel 6U crate
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. Dataread-out system
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Signal inputs

el i —=
e
BR[E][2][5] | _EFE.
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bufler

Front-end PCs

| card Network card L\ Network card

Gigabit network switch switch

Back-end PC — -

Frag, Y Frag, Y Frag, Y Frag, Y Frag, Y Frag, Y Frag, Y Frag Y Frag,
buter A butier A butier A butler A butier A butier A butter A butlar A buflar, v

MSCB

Event=
bullder slow control system

—~ Interactive ROOT Interface

Any Web browser mhttpd

O Shared memory
History
Database
\:I Process or thread
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G ven bui\in
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e The raw data are scattered over several VME crate
e each crate is read-out after any trigger by dedicated CPU that create a fragment
- all the fragments sent to the main CPU

« what happens if at a certain point a fragment is loss??
fragment belonging different events are mixed

data useless!!

DAQ crateO DAQ crate1 DAQ crate N-1 DAQ crate N

TRG system trigger bus

e The solution is the trigger bus: from the trigger to the DAQ crates
e event number + event code (trigger type)

e connected via the VME transition cards
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Some consideration about DAQ efficiency NFN
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e DAQ efficiency is defined as
 DAQLiveTime x TriggerEfficiency

e This quantity has to be as large as possible in any
TDAQ system

TRG eff | gumg lower thr - higher TRG rate

TRG eff puw higher thr - lower TRG rate

e Compromise...

e milestones! let’s start from dead time...
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0 __Read-outdead time

"

e As a first attempt we used a single buffer read-out

e the system is in dead time during the read-out of a crate through
VME

e the dead time is dictated by the heaviest crate

ta = 40 x ( 0.125ms  x 40960 B/83000 MB/ms) = 24.7 ms

# mezzanines/crate # DMA setup time # data transfer time

¢ the associated DAQ live time is given by the probability to
have 0 event during the read-out (trigger rate = 7 Hz,
Poissonian event distribution)

LT = exp(—Rirg - ta) ~ 84%

e Requirement for the trigger rate

e Which trigger algorithms can we use?

e what about the rejection power?
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) Considerations about trigger algorithms  /nr»

N

-

e Goal: DAQ rate of about 7 Hz
e Detector to be used:

e L Xe calorimeter (photon energy, time and direction)

e Timing Counter (positron time and hit position)

e Synchronous processing with FPGA
e algorithms to use 1 CLK cycle per operation (if possible)
+ registers, adders, subtracters, comparators for simple operations

+ Look Up Tables for more complex operations, for example
multiplications
This choice is driven by physics
_ _ and your detector!
¢ Final choice

e photon energy discrimination

e photon-positron timing

Differential Branching Ratio

e photon-positron space correlation

¢ The discrimination on photon energy plays the lead role

e take care of online energy reconstruction

07 o8 09 1
y (photon energy)
) N = - . S s -
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=" Online energy reconstruction /¥«
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e Synchronous sum of the LXe signals

 the peak of the obtained waveform is the online energy estimate

14000

12000[-

Nepa—1 1::’)33 f wim peak pdiscriminator
AIOI(t) — 2 fIAI(f) 6000§ i
=0 4000- : threshold

2000}

| amplitude (a.u.)

0

2000 =gl e e S5 0
3 3 5

e Refined algorithm tme )

e online pedestal subtraction
- the baseline value may differ from channel to channel (remember QDC in lab4)
refer the waveform to a common value before the sum stage
e channel calibration with Look Up Table

- for example in case of PhotoMulTipliers gain and Quantum Efficiency
calibration
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)
=) Implementation of online pedestal subtraction wN
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Algorithms with
most
schematic

pipeline with T - . - o language
shift registers i [ e P e e e B LTI o o VME protocol

+ some
algorithm with
verilog

B

If the sample is larger than
threshold it is not included
in the pipeline

mean value from
last 4 samples in pipeline
as pedestal estimator

1<
o o C
]
= 0
20
e K
- R wen { ST
J P . i o
A=20mV, f=0.1 Mhz el et L

pedestal subtraction in 1 CLK ¢

\ -

W#uwmw. “”WMWM ONE_PMT_SUBPED

sl i ¥ e eabd g '\nJrvv\’%"ﬂ"-‘ : 5 7 ] 8
1 2 3 4- 5 6
t (us)

- NG S - g . NS S - = D e - AN G S - = - - A\ § S - = <
e e e - /o es _ S o o - e = o e _ e -~ . 9 - . -~ e

" Budapest, 01-02-2014 L. Galli, PSI & INFN Pisa




PAUL SCHERRER INSTITUT

S Etfect of calibration!

e By applying a refined calibration reconstruction improves!

e Dbetter reconstruction -> higher threshold with same efficiency on signal -> lower trigger rate
-> higher DAQ Live Time

- improvement of the DAQ efficiency

T
Entries 30688
Mean 3876 f i 3(3)(3’;’;
S 9355 | 1000 - - 2059
ndf 200.1/46 - ;
b 4.064e-21 B | 1283/32
7421 +122 800 , _ 1.724¢-13
4697 4.9 45+138
| 4772+ 38
17.6 MeV y-line used for calorimeter calibration ... g1 187928
I 1.776 = 0.045 |

[ Il Il 1 1

i 400}

Iréso =$ 4.8 percent : 200L @O : percent

| 1 1 1 1 | | 1 EN«"PM%'I 1 ) :
2000 4000 6000 000 , , 1 o |
On‘ﬂne E) 2000 4000

6000 On(l(i he E-?OOO

e |t is important to get the best from the system with the available techniques!

- - oa N . & Y oA N - = ~ - = g oa Nl - & Y ‘7 N - o -
e & S » R P W g o e a7 N R e . Py = Lo o Q Lo

| Budapest, 01-02-2014 17 - L.-Gélli, PSI & INFN Pfsa “




PAUL SCHERRER INSTITUT

- Run conﬂguratlon and momtormg INFN
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e The trigger system provides the DAQ with 32 different !

selection algorithms

main selection

trigger efficiency with

e the trigger type are order with a priority pre-scaled triggers

Relative efficiency
=
W

P BT T S |

0 55
E, (MeV)

]

 pre-scaling factors
+ programmable fraction of minimum bias selection in the data
stream : : ; ; ;
trigger efficiency studies - pre-scaled selection triggers e
= for calibration and monitoring =

i i R R

detector calibration and monitoring

physics analysis, normalisation evaluation

e This flexibility is crucial to take under control the detector

S 0 0 0 5 O

T

e the run configuration is store in a database

of

* access to the shift crew - ' ®  Trigger types
+ few default run configuration available calorimeter picture

* is it written together for data to be used in analysis

e GUI to check data quality online

e events “photographs”

* not so precise, sensitive to major problems

e Automatic analysis right after the acquisition to check
further the data quality

* histograms for detector debugging

» dead channels, electronic noise...
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=) DAQ efficiency: measurement and optimisation wN
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e First run in 2008: DAQ efficiency = 55%

* ‘preliminary” trigger system configuration Live time - online efficiency plane
- first version of online reconstruction algorithm ———— .-.\ ——
AN
e The DAQ (trigger) efficiency measured at the end ' \¥ \
of data taking

- the selection has to be trained with data \ \
* the higher Live Time is NOT the experimental :

+ calibration not optimised yet

Live time

4
©

working point .
« but the Live Time is measured online... \

e How to find the best working point?

/

i

e ftrigger “simulation” with real data .
99 @ Working Point 2008 o |

« modify selection and predict the trigger rate and 0.6
efficiency with no algorithm improvement ' + Best Point

* improve the selection algorithms 0.55 Y Probe Points

+ for example improve calibrations! :
085 055 0.6 065 07 075 0.8 0.85 09 095 1

Online efficiency
e By algorithm refinement we reached 75% DAQ

efficiency
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¢ Many possibilities

e reduce dead time read out
« zero-suppression of FPGA to neglect the read-out of “empty” channels
this is dangerous with an homogeneous calorimeter...
« Use 2eVME D64 read-out (160 MB/s instead of 80 MB/s)
you have to foreseen it at design phase... :(
unfortunately you usually miss something in your original design
* refined selection algorithms
- current latency of the order of 500 ns, DRS running at 1.6GSPS
a more complex algorithm would lead to a larger latency... :(
e Multiple-buffer read-out!
- data stored in circular memories on VME boards
during a buffer read-out the next buffer is filled (if free...)

busy released immediately!

this can be implanted in FPGA in any time... if you have enough resources!
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___Muttiple buffer(0)

B 5y

buffer write index

«——Dbuffer busy

buffer read index

Budapest, 01-02-2014
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Situation at
the begin of a
run

all buffers free

all BUSY at 0
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buffer write index

v

0 ‘ \ «——Dbuffer busy
A

buffer read index

Budapest, 01-02-2014

__ Muttiple buffer(1)

> - -

= 4 -
e A O —

Situation after
the first event

1 buffer full
filling the next
one
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buffer write index

___Muttiple buffer(2)

B 5y

«——Dbuffer busy

buffer read index

Budapest, 01-02-2014
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Another event
during the first

buffer read-out
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buffer write index

buffer read index

Budapest, 01-02-2014

___Multiple buffer(3)

B 5y

«——Dbuffer busy

- - = <
e o 2 e o

The first buffer
read-out
finished
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usy and\in %

SYO
SY1 :D7 ALL RAM full --> DAQ in stop
SY2
SYO
SY1 i>7 NOT EMPTY RAM --> read out
SY2

e Read-out when one of the buffer busy is 1

J

e The system is busy when all the 3 buffers are full
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£ And DAQEIive Time?

"

® The system is busy when all the 3 buffers are filled
during while you are reading

 the read out time is unchanged

e ~25ms

e the LiveTime fraction can be evaluated

LT — e—Rtrg-td . [1 +Rtrg fd _|_ (Rtrg fd)2/2']

® it is close to 99% even with a trigger rate close to 14 Hz

e there is room to relax the trigger condition and improve also
the trigger efficiency!
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Livg> time

rithm

® 2008
% 2009-2010
2011-2013

1 Y A I 4

0'8.5 055 06 065 0.7 075 08 085 09 095
Trigger efficiency
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e , Co\usin >

e ATDAQ system to be designed on top of an experiment
* the experimental needs drive the choice of the technology
e Even when the technology is decided a lot of compromise, in this case
* Waveform digitiser with lat least 1.6 GSPS sampling speed
background rejection requires the best timing possible
- trigger latency to be least than 500 ns
* trigger based FPGA

system flexibility, for example detector calibration

calibration procedures may changes during the run... and you do want to be the
reason why a new calibration procedure will not be used ;)

e Once your TDAQ is built you have to get the best performance

* use all the accessible handles

- this is just an example but can help
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