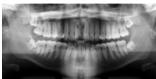

INTRODUCTION TO MEDICAL IMAGING

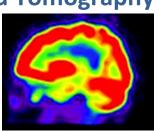
Winnie Wong

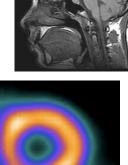
International School on Trigger and Data Acquisition Systems

Wigner Datacenter

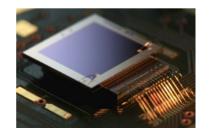

Budapest, 2014

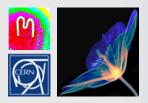
Outline


Overview of Medical Imaging Modalities:

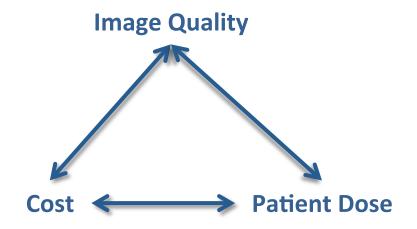

Radiography

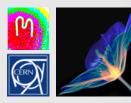
- **Computed Tomography**
- (Magnetic Resonance Imaging)
- (Ultrasound)
- **Single Photon Emission Computed Tomography**
- **Positron Emission Tomography**

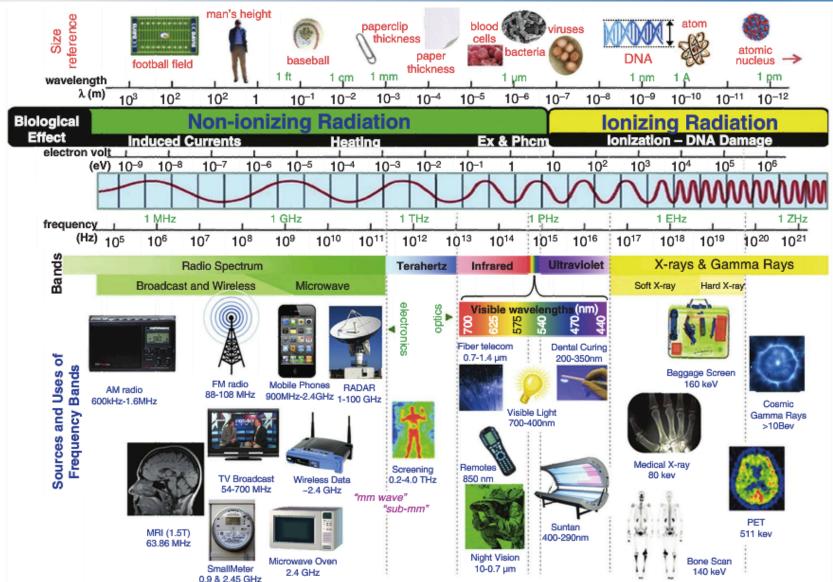


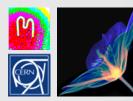


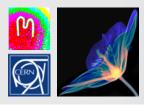
Informatics


The Medipix Family of Hybrid Pixel Detectors




Imaging the Human Body


- Goal of diagnosis-oriented medical imaging is to view internal structures and/or understand the functions or organs <u>inside</u> the body
- Replace the need for many exploratory surgeries
- Used as a preventative tool as well as a curative tool
- Used to determine treatment and follow the progress of the treatment

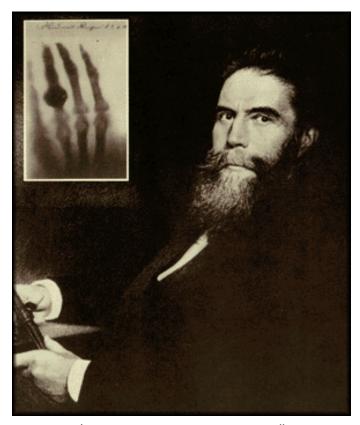
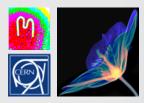

The Electromagnetic Spectrum

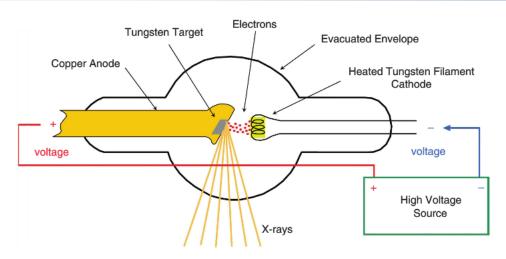
Common Medical Imaging Modalities

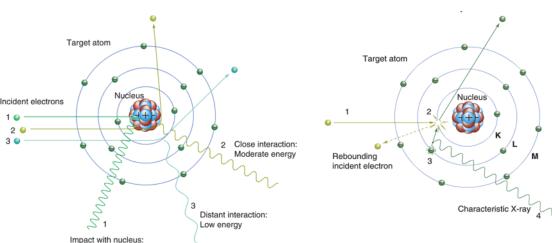
Modality	Radiation Detected	Clinical Information	Cost	Exam Duration	Pros	Cons
Radiography	X-rays (transmission)	Anatomic structures (e.g broken bones)	< \$100	Seconds	Quick, cheap, accessible, lower doses than CT	Radiation dose, anatomic noise from overlaying structures
Computed Tomography (CT)	X-rays (transmission)	Anatomic structures	\$1000- \$3000	Minutes (actual scan time is seconds)	Fast, great anatomic detail	Radiation dose
Magnetic Resonance Imaging (MRI)	RF	Anatomic structures (also some functional applications)	\$1000- \$4000	0.5 hour	No radiation, great soft tissue contrast	Not suitable for patients with metallic implants, patients can feel clausterphobic, long scan time, expensive
Ultrasound Imaging	High frequency sound waves		\$100- \$1000	10-15 minutes	No radiation, real-time, no side effects, good soft tissue resolution	Highly operator-dependent, limited applications
Single Photon Emission Computed Tomography (SPECT)	Gamma-rays (emission)	Functional (e.g. brain, heart)	\$3500	Hours (actual scan time 30-40 minutes)	Lesion localisation, removal of out-of-focal plane data (compared to planar imaging)	Radiation dose, risk of allergic reaction to tracer, patient is radioactive (for a short time), poor spatial resolution (1 cm)
Positron Emission Tomography (PET)	Gamma-rays (emission)	Functional	\$3000- \$6000	2-4 hours (actual scan time 15-35 minutes)	Can distinguish between benign and malignant lesions, good spatial resolution for functional imaging	Radiation dose, risk of allergic reaction to tracer, patient is radioactive (for a short time), expensive

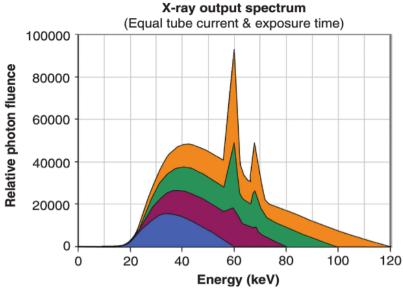
History of Radiography

- Discovery of X-rays by Wilhelm Roentgen in 1895
- First radiographic image of Bertha Roentgen's hand on December 22, 1895
- Nobel Prize in Physics in 1901

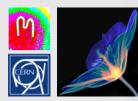

Image source: www.accessexcellence.org


Image source: www.learningradiology.com



X-ray Production

1 eV ≡ energy of electron accelerated in 1 V E-field



Factors Affecting the X-Ray Spectrum:

- Anode target material
- Beam filtration
- Tube voltage (kVp)
- Tube current (mA)
- Exposure time (s)

-9-Image source: The Essential Physics of Medical Imaging (textbook)

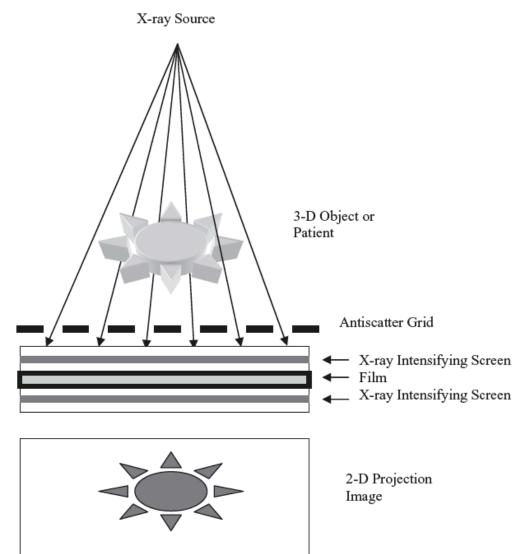
Maximum energy

Radiography

Radiography

CT

MRI


Ultrasound

SPECT

PET

Informatics

Medipix

Example energies:

55 kVp to image thin bones (e.g. wrist)

75-90 kVp to image spine (depending on size)

120 kVp to image lungs (less interaction with high density ribs)

"Typical" Doses

CT
MRI
Ultrasound
SPECT
PET
Informatics

Medipix

Single Exposure Exam	Average Effective Dose [mSv]
Chest (LAT)	0.04
Chest (AP)	0.02
Skull (AP)	0.03
Skull (Lat)	0.01
Pelvis (AP)	0.7
Thoracic Spine (AP)	0.4
Lumbar Spine (AP)	0.7
Mammogram (four views)	0.7
Dental (LAT)	0.02
Dental (panoramic)	0.09
DEXA (whole body)	0.0004
Hip	0.8
Hand or Foot	0.005
Abdomen	1.2

1 Gy = 1 J/kg (= 100 rad)

Absorbed dose D is measured in Gy

The quality factor (biological impact weighting factor) for photons, Q = 1

Dose equivalent, H [Sv] = D [Gy] x Q

Data from: https://hps.org/documents/meddiagimaging.pdf

Note: these numbers do not represent standards. They are just examples of typical values. Dose depends on many factors, including the size of the patient and the design of the machine.

Detectors in Radiography

Screen-Film Radiography

• Film with photosensitive emulsion sandwiched between two intensifying screens (scintillator crystals) that convert X-rays to visible light →indirect detection of X-rays

Computed Radiography (CR)

- Imaging plates coated with photostimulable phosphor (PSP) materials that store absorbed X-ray energy in charge traps in metastable energy states (caused by dopants in the material)
- Trapped charges are released when the PSP is stimulated by a red laser. Recombination of e⁻/h⁺ pairs causes emission of blue light, which is then read by a photomultiplier tube (PMT).

Digital Radiography (DR)

- CCD* or CMOS APS** or flat panel + scintillator crystal →indirect detection
- Flat panel + semiconductor (e.g. amorphous selenium) → direct detection

* CCD: Charge Coupled Device

**APS: Active Pixel Sensor

Radiography

CT MRI

Ultrasound

SPECT

PET

Informatics

Α

Mass Attenuation Coefficient

soft tissue

20

Dual Source Radiography

Logarithmic weighted subtraction to remove anatomic noise

iodine

100

bone

60

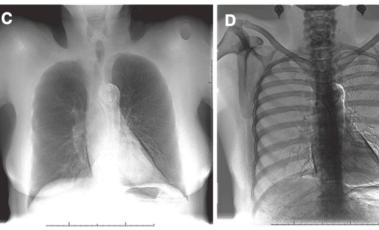
Energy (keV)

$$DE(x,y) = \alpha + \beta \left[Ln \left\{ (I_{HI}(x,y)) \right\} - R Ln \left\{ I_{LO}(x,y) \right\} \right]$$

Radiography CT

MRI


Ultrasound


SPECT

PET

Informatics

Medipix

120

Image source: The Essential Physics of Medical Imaging (textbook)

A: Density-dependent mass attenuation coefficients of different tissues

- **Z**_{iodine} = **53**
- $Z_{bone} \approx 13$
- $Z_{\text{soft tissue}} \approx 7.6$

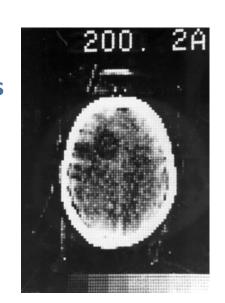
B: 120 kVp radiograph

C: Soft tissue-only image (bone subtracted out)

D: Bone (and metal) image (soft tissue subtracted out)

History of Computed Tomography (CT)

Nobel Prize in Physiology or Medicine 1979 jointly awarded to Allan Cormack and Godfrey Hounsfield "for the development of computer assisted


tomography"

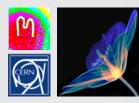


Image source: www.nobelprize.org

- CT was the first medical imaging modality to require computers
- First patient scanned on October 1, 1971
- First CT scanner in clinical use was the EMI Mark 1
 - 80 x 80 pixels of 2.4 x 2.4 mm²
 - 3 bits (i.e. 8 shades of grey) per pixel
 - A scan took ~4 minutes and image reconstruction ran overnight

CT Basics

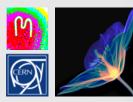
- In radiography, a 2D image is taken of a 3D object → overlapping structures
- Greek tome ("cut") or tomos ("part" or "section") and graphein ("to write")

Axial Coronal Sagittal

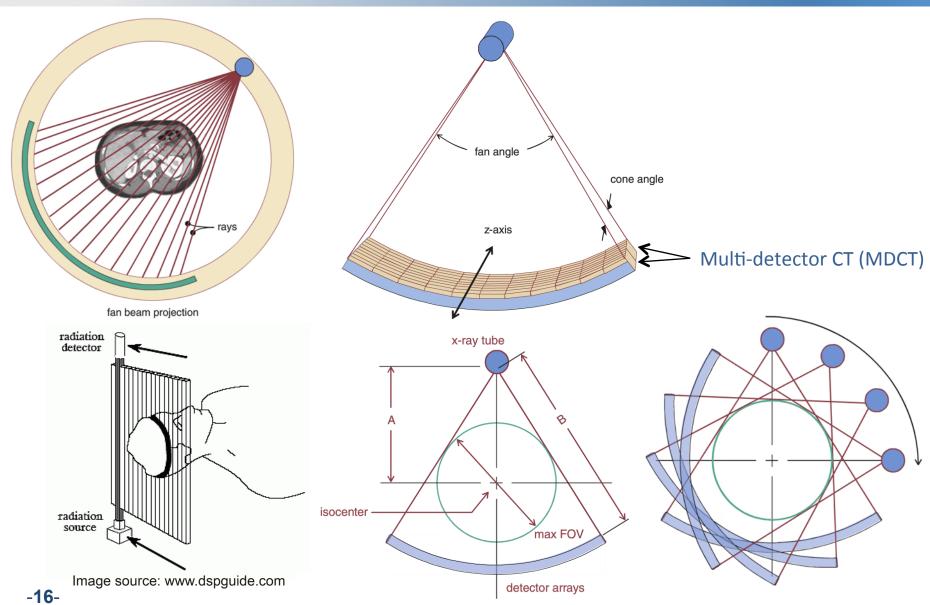
Radiography

CT

MRI


Ultrasound

SPECT


PET

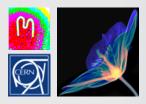
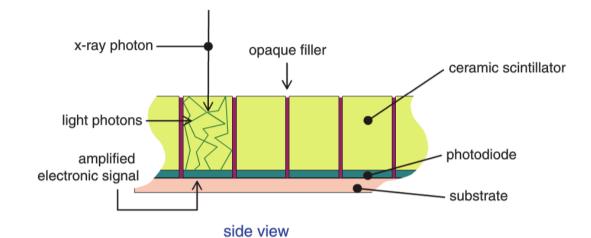
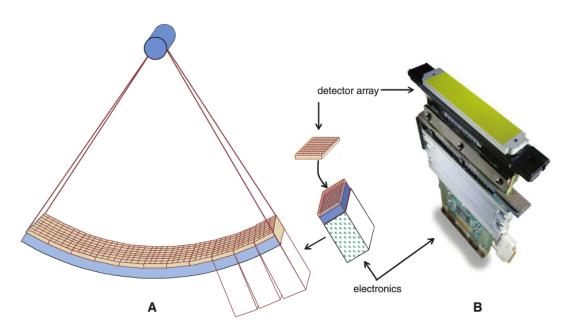
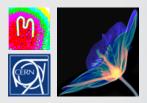

Informatics

Image source: The Essential Physics of Medical Imaging (textbook)

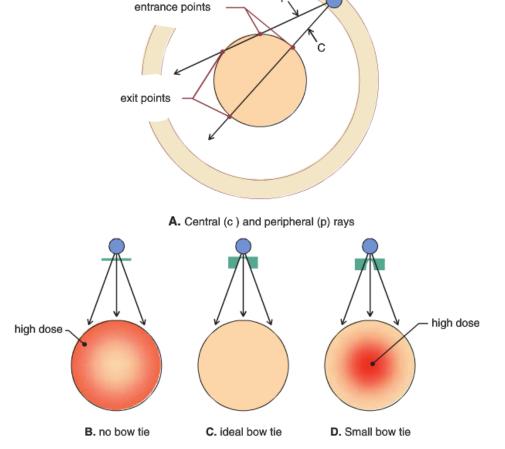

CT Basics

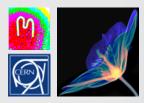


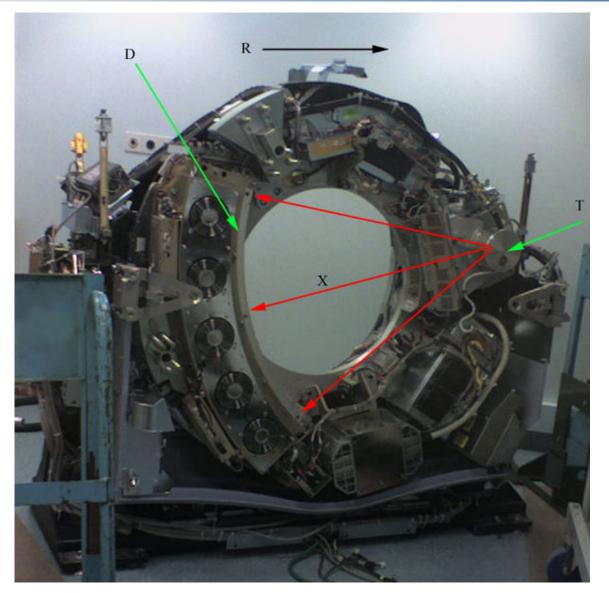


CT Detectors

- Indirect detection with high-density scintillation crystals
- The opaque fillers reduce optical crosstalk

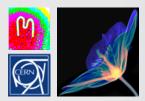





Beam Shape

 Bow tie filters used to shape beam for homogeneous dose distribution in thickness of body

Inside the Gantry



T: X-ray tube

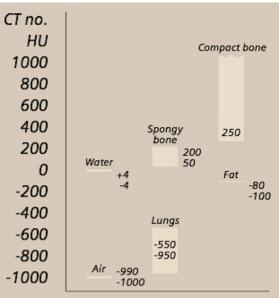
X: X-ray beam

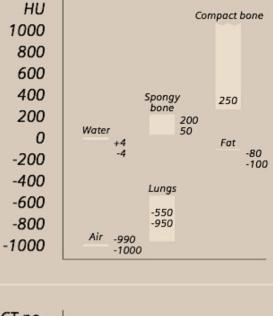
D: Detectors

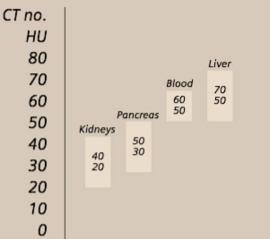
R: Ganry rotation

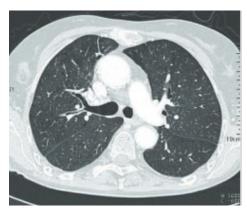
The Houndsfield Unit

The (12-bit) "CT Number" (grey scale value) stored in a processed CT image is given in **Houndsfield Units (HU):**


$$HU(x, y, z) = 1000 \frac{(\mu(x, y, z) - \mu_w)}{\mu_w}$$

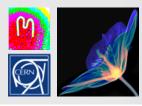

 $\mu(x,y,z)$: average linear attenuation coefficient for a voxel of tissue in the patient at the location (x,y,z)

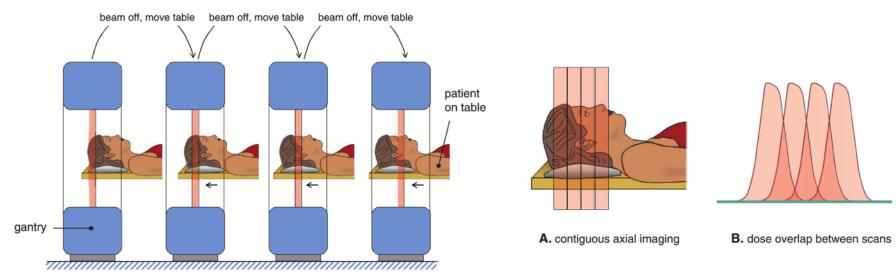

 μ_{w} : linear attenuation coefficient of water for the X-ray tube setting

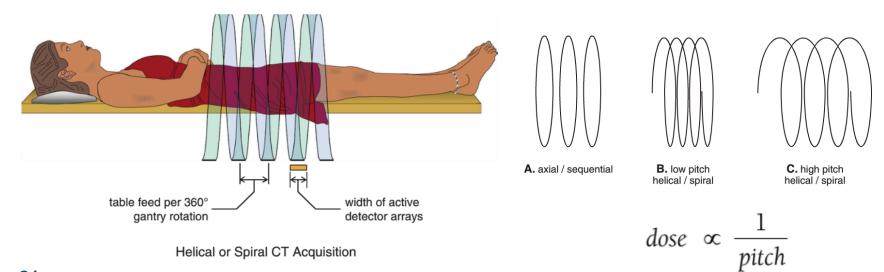

Note: The HU scale depends on the X-ray tube setting. The figure here shows the HU values for one example setting.

Typical CT number range: -1024 to +3071






Lung window


Soft tissue window

Axial versus Helical Scans

Axial or Sequential CT Acquisition

"Typical" Doses

Recall:

Single Exposure Exam	Effective Dose (mSv)
Chest (LAT)	0.04
Chest (AP)	0.02
Skull (AP)	0.03
Skull (Lat)	0.01
Pelvis (AP)	0.7
Thoracic Spine (AP)	0.4
Lumbar Spine (AP)	0.7
Mammogram (four views)	0.7
Dental (LAT)	0.02
Dental (panoramic)	0.09
DEXA (whole body)	0.0004
Hip	0.8
Hand or Foot	0.005
Abdomen	1.2

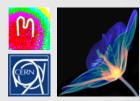
Complete Exams	Effective Dose (mSv)
Intravenous Pyelogram (kidneys, 6 films)	2.5
Barium Swallow (24 images, 106 sec, fluoroscopy)	1.5
Barium Enema (10 images, 137 sec. fluoroscopy)	7.0
CT Head	2.0
CT Chest	8.0
CT Abdomen	10.0
CT Pelvis	10.0
Angioplasty (heart study)	7.5
Coronary Angiogram	4.6

Data from: https://hps.org/documents/meddiagimaging.pdf

Global average background radiation = 2.4 mSv/year Swiss average background radiation = 2.8 mSv/year

Radiography

CT


MRI

Ultrasound

SPECT

PET

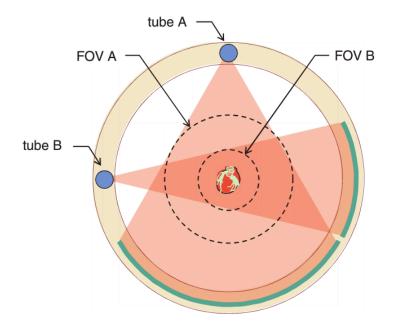
Informatics

Dual Energy CT

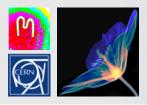
- Similar concept to dual energy radiography
- Can be done by either:
 - Switching a single source (e.g. between 80 kVp and 140 kVp), or
 - Using two sources (note: tube B has a smaller FOV due to the gantry geometry)

Radiography

CT


MRI

Ultrasound


SPECT

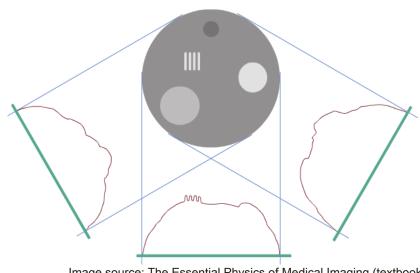
PET

Informatics

dual source CT

Tomographic Image Reconstruction

Pre-processing includes:


- Corrections for bow tie filter (reference images taken in air)
- Detector gain variation correction
- Interpolation of data to compensate for dead pixels
- Scatter correction
- Adaptive noise filtering
- Logarithmic transformation to account for exponential nature of X-ray attenuation

• Projection image becomes linear sums of the attenuation coefficients along the X-ray path

(through the patient)

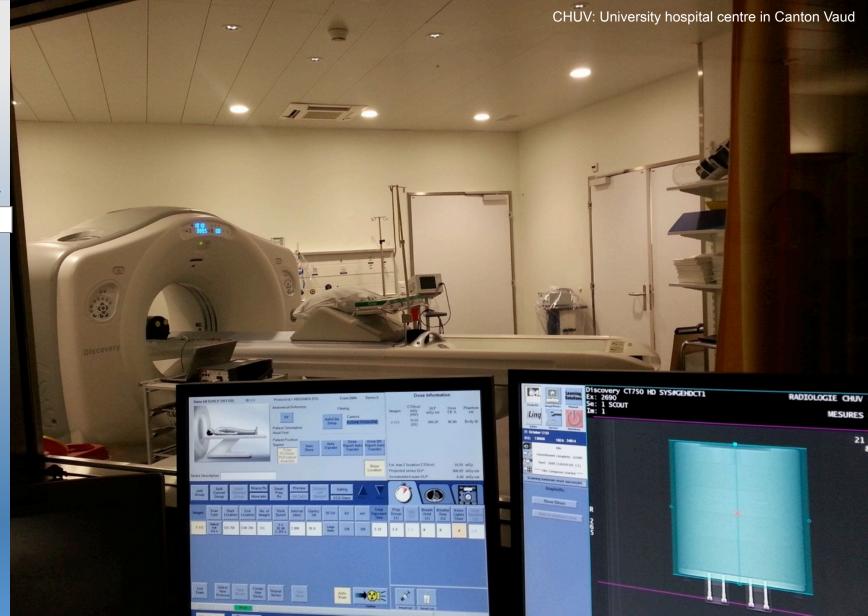
Image reconstruction:

- Simple back-projection (suffers from 1/r blur)
- Filtered back-projection
 - Corrects 1/r blur, can be done in the frequency domain – Fourier Transforms
- Iterative back-projection
 - Computationally-intensive (mostly used in SPECT which has less raw data)
 - Can model X-ray spectrum, focal spot blur, etc.
 - Better final image quality than filtered-back projection dose reduction

CT Scatter Measurements at CHUV

Radiography

CT


MRI

Ultrasound

SPECT

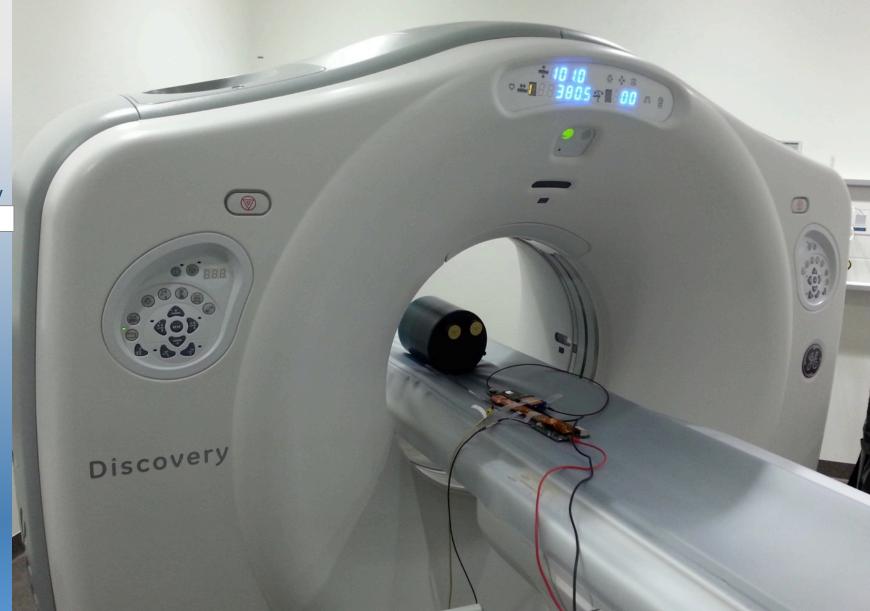
PET

Informatics

CT Scatter Measurements at CHUV

Radiography

СТ


MRI

Ultrasound

SPECT

PET

Informatics

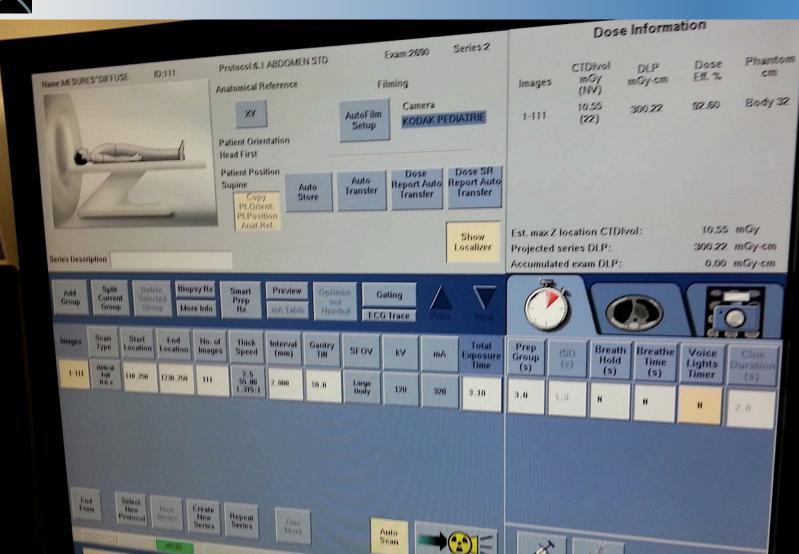
Radiography

CT

MRI

Ultrasound

SPECT


PET

Informatics

Medipix


CT Scatter Measurements at CHUV

CT Scatter Measurements at CHUV

CT **MRI**

SPECT

PET

Radiography

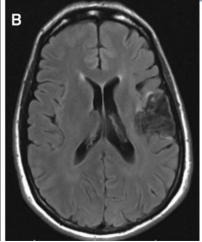
CT

MRI

Ultrasound

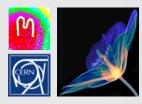
SPECT

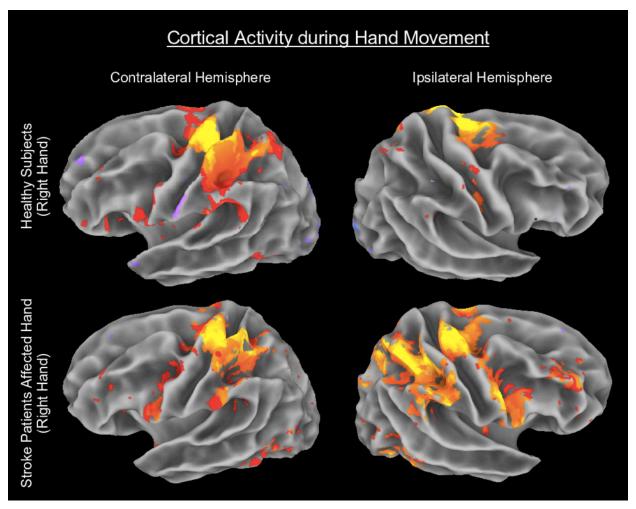
PET


Informatics

Medipix

Magnetic Resonance Imaging




- Antennae detect the emitted RF waves
- The proton resonance frequency is proportional to magnetic field strength, so the machine can determine spatial information by vary the magnetic field strength as a function of position
- Position of each signal from the patient is determined by its frequency and phase

- Tomographic imaging, competes with **CT** in many clinical applications
- Based on the nuclear magnetic resonance properties of the proton (i.e. nucleus of hydrogen)
 - 10¹⁸ protons/cm³ of tissue
- Proton has a magnetic moment. When placed in a strong magnetic field, it precesses (wobbles) about its axis and absorbs 64 MHz RF energy
- Patient is placed in the 1.5 T magnetic field and surrounding antenna coils send an RF pulse
- Protons in the patient absorb the RF wave energy and after a time, re-emit the RF waves. The time depends on the spatially-dependent magnetic properties of the tissue.

Functional MRI (fMRI)

Brain activity determined by monitoring blood flow

Ultrasound

Radiography
CT
MRI

Ultrasound SPECT

PET
Informatics
Medipix

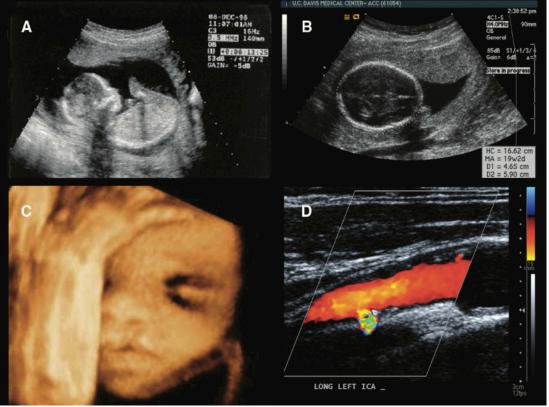


Image source: The Essential Physics of Medical Imaging (textbook)

- Ultrasound is another form of tomographic imaging
- A transducer in contact with the patient's skin generates a short pulse of sound, which travels into the tissue
- Echoes are created by reflection of the sound waves by internal structures in the body
- An array of multi-element transducers scan through a sector
 - Ultrasound is reflected strongly by interfaces, so is useful for surfaces and

internal structures of abdominal organs

- Ultrasound is also commonly used to image a fetus since there is no ionising radiation
- Not useful to image interfaces between air and tissue (e.g. lungs) or bone and tissue (e.g. brain)
- In Doppler ultrasound, the Doppler effect is used to measure the motion of blood

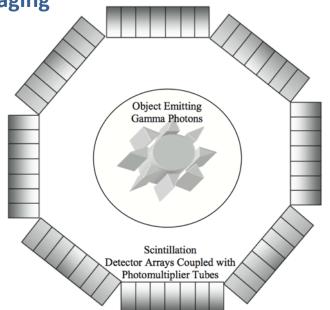
Check on demo

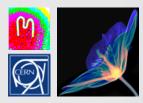
Single Photon Emission Computed Tomography

- SPECT is the standard for many nuclear medicine exams
- Patient is administered a radionuclide tracer that emits gamma rays
- E.g. ^{99m}Tc (140.5 keV γ-rays, 28-33 keV X-rays),

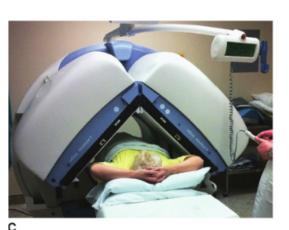
 125 (35.5 keV γ-rays)
- Path/location of tracer concentration is imaged e.g. iodine tends to concentrate in the thyroid, so we can use an iodine-based tracer to image thyroid cancer and its metastases

SPECT often used in brain and cardiac imaging

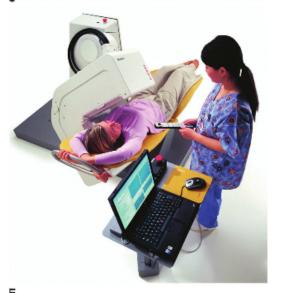

Radiography
CT
MRI

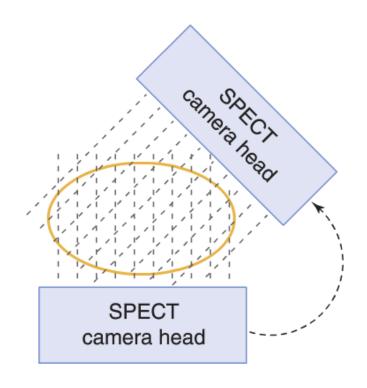

Ultrasound

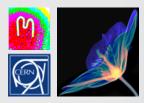
SPECT

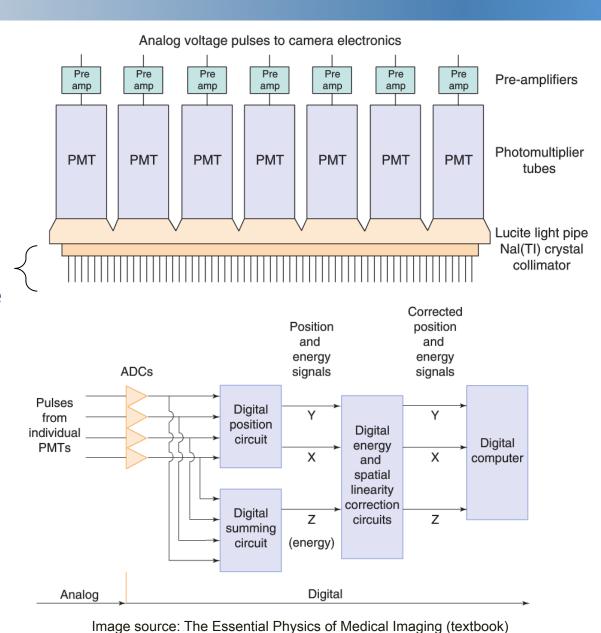

PET

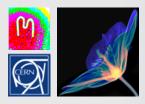
Informatics




Body Contouring in SPECT






-34-

The Scintillator Camera

Scattering of photons in patient tissue is a problem in every modality dealing with photons. Collimators (a.k.a. antiscatter grids) are placed in front of the detector to select parallel rays.

SPECT Images

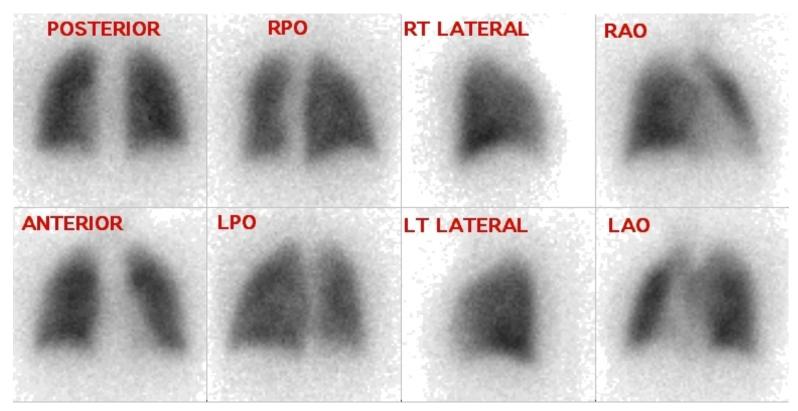


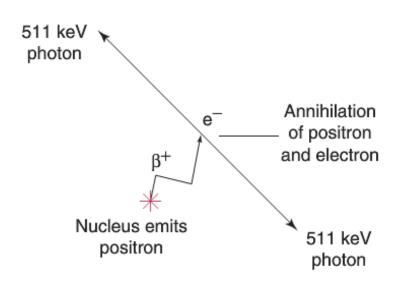
Image source: www.nuclearimaging.com.au/lung_spect.htm

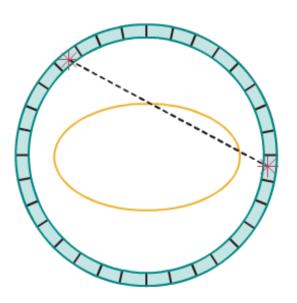
Positron Emission Tomography

Radiography
CT
MRI
Ultrasound
SPECT

PET

Informatics
Medipix


- The patient is administered a solution containing glucose molecules labelled with a radionuclide
 - Glucose concentrates in regions of high metabolism
 - Malignant (tumour) cells have higher rates of metabolism than normal tissue
 - Effective for oncological applications, particularly for imaging prostate cancer



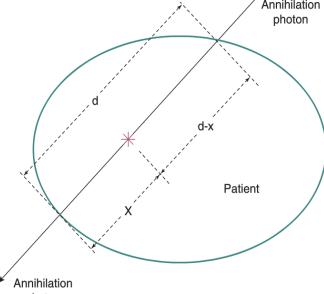
Positron Emission Tomography

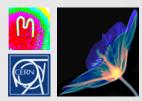
- The most commonly used tracer is ¹⁸F-2-fluoro-2-deoxy-d-glucose (FDG)
- Positrons (i.e. β^+) are emitted from the ¹⁸F decay
- The interaction of β^+ with an e^- (from the surrounding tissue) results in annilhilation, which creates two γ photons of 511 keV emitted in opposite directions
 - ACD: annihilation coincidence detection
- A ring of PMT detectors surrounding the patient detects and reconstructs coincident pairs of γ-rays separated by 180°
 - Need position, time and energy information

CT
MRI
Ultrasound
SPECT

PET

Informatics
Medipix




Attenuation of Emission Photons

- In photon transmission modalities, the attenuation of X-rays through the tissue can be estimated
- In photon emission modalities (i.e. planar nuclear imaging, SPECT, PET), a transmission source need to be included to characterise attenuation in the patient
 - Used for attenuation correction during reconstruction
 - Source can be an external gamma source or X-rays

• For a 20-cm path in soft tissue, ~15% of annihilation photon pairs escaping tissue without interaction

$$(e^{-\mu x}) \cdot (e^{-\mu(d-x)}) = e^{-\mu d}$$

PET/CT

- CT data used for:
 - Patient alignment
 - Attenuation correction in PET data reconstruction
 - Anatomic information (if CT doses high enough for diagnosis quality)

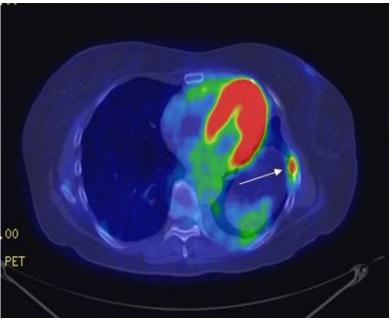
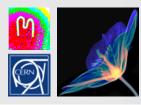



Image source: http://cancergrace.org

Other Combined Modalities

PET/MRI

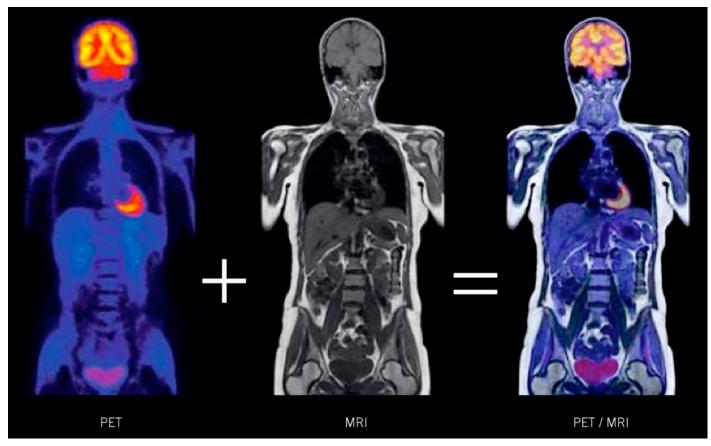
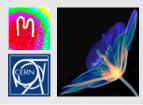



Image source: stonybrookmedicine.edu/imaging/pet-mri

Other Combined Modalities

SPECT/CT

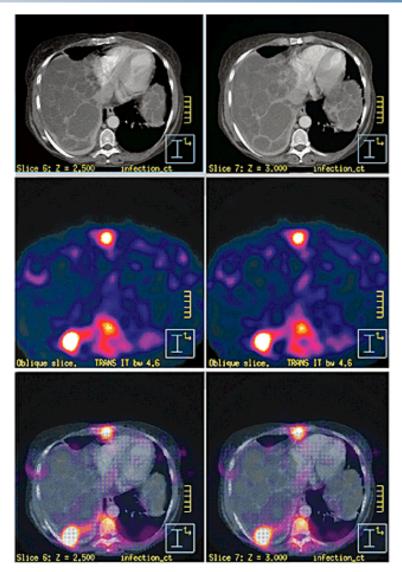
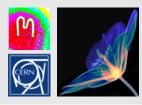



Image source: pubs.acs.org

Other Combined Modalities

SPECT/MRI

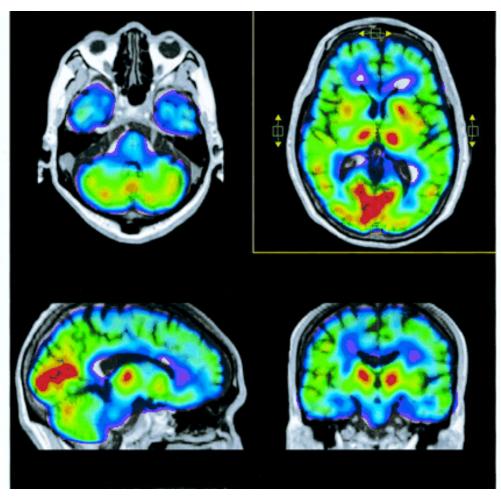


Image source: stonybrookmedicine.edu/imaging/pet-mri

Data Formats

Radiography
CT
MRI
Ultrasound
SPECT
PET

Informatics

Medipix

Modality	Pixel matrix format	Pixel word size/dynamic range [bits/pixel]
Digital radiography Fuji CR chest (200 μm) Trixell DR (143 μm)	2140 x 1760 3000 x 3000	10-12 12-16
Digital fluoroscopy	512 ² or 1024 ²	8-12
Mammography GE-24x31 cm (100 μm) Hologic-24x29 cm (70 μm)	2394 x 3062 3328 x 4096	12-16
X-ray CT	512 ²	12
MRI	64 ² or 1024 ²	12
Ultrasound	512 ²	8
Scintillation camera planar	64 ² or 128 ²	8 or 16
SPECT	64 ² or 128 ²	8 or 16
PET	128 ² or 336 ²	16

We can estimate data rates of some of the modalities, but these are highly dependent on system configuration and body part being imaged. E.g. in MDCT, we can assume 4, 8, 16, or 64 slices, a fan angle of 60° , pixels of the order of a few hundred μ m, and 0.5 s per gantry rotation.

The DICOM Standard

- DICOM = Digital Imaging and Communications in Medicine
- Define a vendor-neutral set of standards to:
 - Track personal information, imaging machine settings, diagnosis results/opinions, etc. for better (more accurate) patient care
 - Viewable by radiologist consulting from offsite
- A set of medical imaging industry standards, e.g.
 - Data storage formats (.dicom is an image file extension) with image information but also database on the patient imaging history
 - Headers containing information object definitions (IOD)
 - Also annotations or notes from consulting radiologists, etc.
 - Communications protocols
 - Compression
 - Security

Radiography CT

MRI

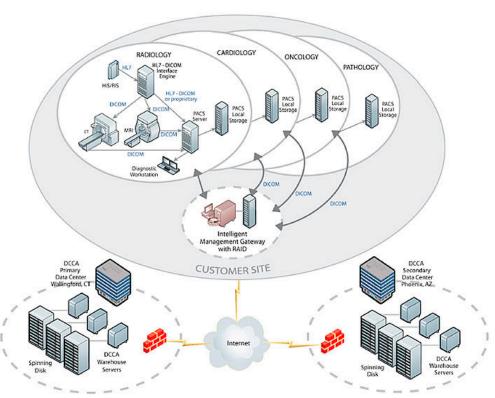
Ultrasound

SPECT

PET

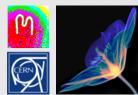
Informatics

Medipix

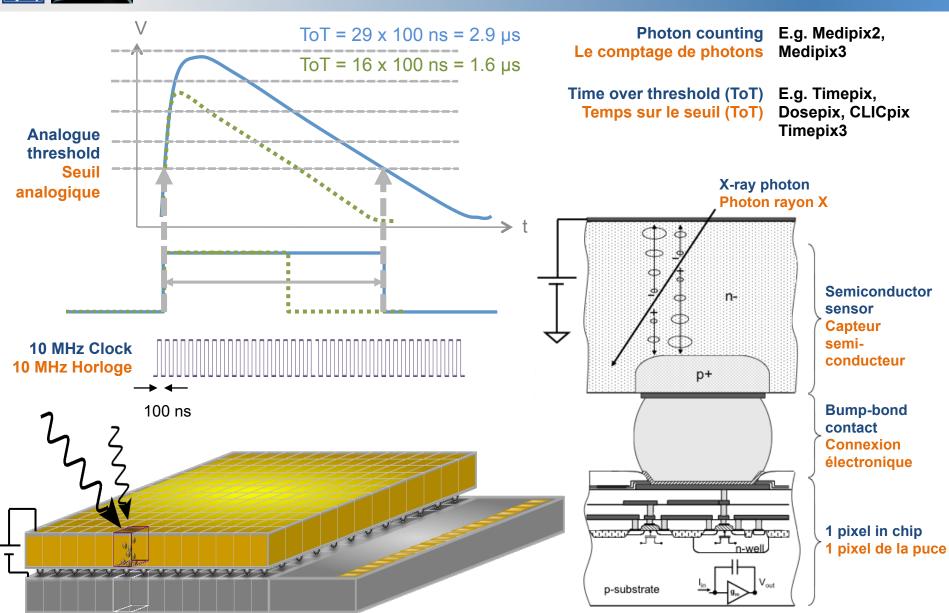

Picture Archiving and Communication System (PACS)

- PACS are hardware/software products specifically for the transmission, viewing, processing, and storage (including redundancy) of medical imaging data
- Each imaging department in a large hospital might have a local mini-PACS

CT
MRI
Ultrasound
SPECT
PET

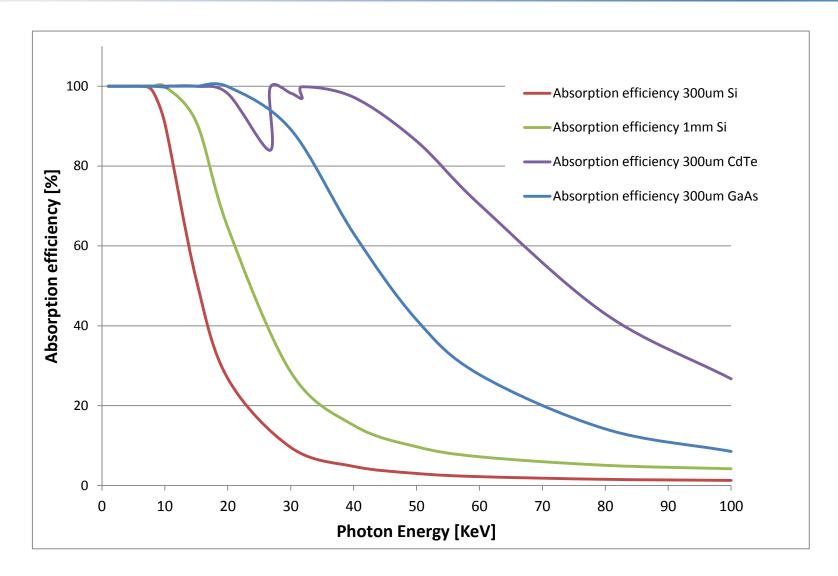

Informatics

Medipix



- A lot of web technologies used (e.g. web servers, web browsers)
- Idea is that radiologists from off-site can access the files
- Also considers displays optimised for medical image viewing

The Medipix Family of Detectors


Photon Counting

Absorption Efficiency in Semiconductor Sensors

Different Readout Formats

• Full frame (e.g. 256 x 256 pixels per detector) e.g. Medipix2, Medipix3, Timepix

- Serial
- 32-bit parallel port
- Continuous read-write e.g. Medipix3
- Rolling shutter e.g. Dosepix
- (Region of Interest) ROI readout, e.g. in CMOS APS not in any Medipix chips but useful for imaging

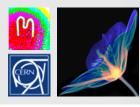
Less for imaging and more for particle tracking (sparse data in frames):

- Zero compression e.g. Timepix3
 - Data push algorithm where the data is encoded in a 48-bit packet that includes the pixel address, ToT counter value and ToA counter value

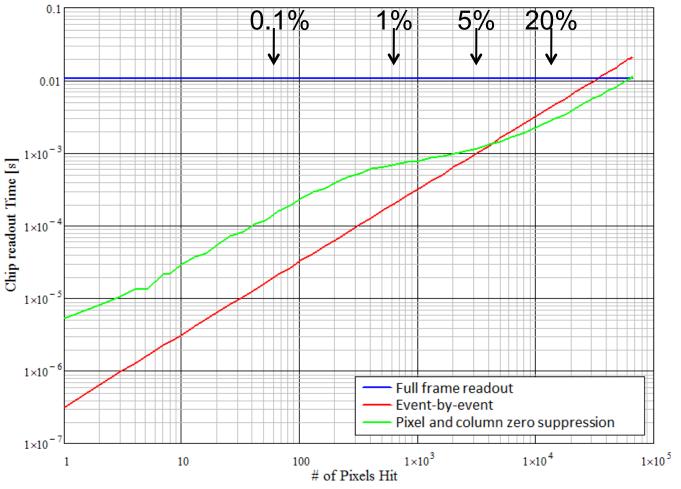
 read out only pixels with data
- Zero suppression e.g. CLICpix
 - Column-wise boolean hit flag

Radiography CT

MRI


Ultrasound

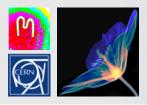
SPECT


PET

Informatics

Medipix

Readout Speed (power) versus Data Occupancy


Similar to:
Medipix3
Timepix3
~CLICpix

Simulation with 100MHz clock, 256x256 pixel matrix, 16 bits/pixel, randomly distributed hits.

Full frame: 256x256x16 bits are read out.

Event-by-event: at each pixel hit, 16bits for the pixel address and 16bits of content are read out.

Zero suppression: columns and pixels not containing data are skipped.

Suggested Reading

Textbooks on medical imaging:

- J. Bushberg et al., The Essential Physics of Medical Imaging, 3rd Ed., 2012.
- L. Hanzo et al., Medical Image Analysis, 2011.

Resources on DICOM and PACS:

DICOM homepage (with downloadable standards): http://medical.nema.org

O. Pianykh, Digital Imaging and Communications in Medicine: a Practical Introduction and Survival Guide, 2008.

Comparing modalities:

http://www.diffen.com/difference/Category:Diagnostics

Some of the Medipix readout systems:

http://aladdin.utef.cvut.cz/ofat/others/RUIN/ (this page includes schematics)

http://www.nikhef.nl/pub/experiments/atlas/pixel/Medipix/

http://quantumdetectors.com/merlin/