

Batch system data locality via managed caches

Max Fischer HEPiX spring meeting 2014

Steinbuch Centre for Computing / Institute of Experimental Nuclear Physics

Background – KIT LHC Computing

- Campus North: GridKa
 - Multi-VO Tier1
 - See Talks by M. Alef, E. Kühn
 - German users exclusive "National Resources at GridKa"
 - Analysis user access to Tier1 CPU share
 - Access to T1 dCache
 - Dedicated NRG dCache
 - Deliberate usage only by power users

Background – KIT LHC Computing

- Campus North: GridKa
 - Multi-VO Tier1
 - German user exclusive "National Resources at GridKa"
- Campus South: EKP (CMS) resources
 - Former T3_DE_Karlsruhe
 - Local SGE workgroup cluster (~200 cores)
 - Local storage (~200TB)
 - Experimental processing resources
 - HPC/Cloud resources via GlideinWMS
 - HTCondor Desktop VM cluster

KIT CMS analysis user workflows

- Low-Frequency official data pre-processing
 - Grid based, semi-automated processes
 - Skimming official data sets from grid storage
 - Output stored at NRG dCache
- Manual transfer of data to EKP fileservers
 - Faster access from EKP network
 - POSIX :)
- High frequency analysis data processing
 - Local batch cluster, constantly evolving processes
 - Reading current private data set from fileservers
 - Output stored at file servers

Joined Tier3 infrastructure

- Combining data generation and processing
 - Extending EKP cluster into NRG
 - Providing direct NRG dCache access via pNFS
 - Technically not a problem
- Deal Breaker: Data Rates
 - Aiming for data input intense workflows
 - High clock speed CPUs in EKP desktops
 - NRG Storage access performance limited

User analysis data profile

- Only fraction of user data is "active"
 - ~1 TB "daily usage" data
 - 2-8 TB overall physics data
 - ~50 MB source code
 - ~1 MB non-recoverable configuration
- Example: CMS Jet Energy Corrections power user
 - 0.5 TB data set processed on daily scale
 - ~2 TB data set processed on weekly scale
 - ~7 TB data set processed quarterly

6 5/22/14 Max Fischer - Batch system data locality

Steinbuch Centre for Computing Institute of Experimental Nuclear Physics

Karlsruhe Institute of Technology

Managed data locality

- All data in storage/file servers
 - Complete set of physics data and files
 - GridKa dCache & EKP Servers
 - What we have already
- Most regularly used files cached on workers
 - Full data locality for most common workflows
 - Caches coordinated for best coverage
 - Fallback to network access

7 5/22/14 Max Fischer - Batch system data locality

Steinbuch Centre for Computing Institute of Experimental Nuclear Physics

Raw HW Benchmarking (compressed)

- Server WN with caches
 - Did not get one in time :(
- Desktop WN with caches
 - SSD Cache limits
 - Theoretical read speed >> Achievable analysis throughput
 - Virtually no loss from concurrent access
 - Capacity/\$ still poor
 - HDD Cache limits
 - Acceptable read speed
 - Concurrent access read speed degradation

Concept - WN

- Cache janitor process
 - Check cache consistency with storage
 - Fetch missing/outdated files from storage
- Expose cache for jobs and scheduling
 - Export cache content list as WN details
 - Point job to cache by modifying config via job wrapper

9 5/22/14 Max Fischer - Batch system data locality

Steinbuch Centre for Computing Institute of Experimental Nuclear Physics

Concept - Pool

- Track file access patterns in batch system
 - User, frequency, task size, concurrency, …
 - Identify high-profile files and data
- Assign files to cache pool
 - Issue caching orders via batch system scheduling
 - Add/remove cached files from WN caches

Questions or Comments?

11 5/22/14 Max Fischer - Batch system data locality

Steinbuch Centre for Computing nstitute of Experimental Nuclear Physics