IHEP Site Report

Jingyan Shi (Jingyan. Shi@ihep.ac.cn)

Computing Center

IHEP

Outline

- Infrastructure Update
- Local Cluster Status
- EGI Site Status
- Management and Operation
- Summary

Local Cluster-- Infrastructure

- More cpu/cores added
 - 1800 cpu/cores added
 - 7082 → 8878 cores
 - 200 GPU cards added
 - 148 → 348 gpu cards
- Lustre
 - 672TB retired, 1PB added
 - 3PB \rightarrow 3.3PB
- Gluster
 - 129 TB added
 - •135TB → 186TB

International and Domestic Links

CA

- Encryption algorithm
 - SHA1->SHA2
 - Smooth transition.
- Ocsp and ipv6
 - Expect to be finished before 2015.
 - Renew
 - Under discussion and seeking a solution

Outline

- Infrastructure Update
- Local Cluster Status
- EGI Site Status
- Management and Operation
- Summary

Local Cluster-- Scheduler

- Torque 2.5.5 + Maui 3.2.6
 - 8878 job slots
 - Including serial jobs, MPI jobs and GPU jobs
- Stable than new version
- More than 66% devices have been out of guaranteed period
- Problem
 - Scheduler block
 - Black-hole for jobs running
 - Zombie jobs

Local Cluster-- Scheduler

- New tool developed and deployed
 - integrated Monitor results
 - Excluded error nodes
 - Zombie jobs detection
- Error Detection and Recovery are done automatically
- More Stable
 - Job Failure Rate dropped down
 - Torque process running stronger

Local Cluster-- Scheduler

Resource Utility Tuning

- Several queues shared same cores group
- Parameter "max_user_run" is set for fairness for users
- The amount of queue user fluctuated unexpectedly
 - free cores but jobs queuing

Resource Utility Tuning

- Established short queue
 - Tune "max_user_run" of short queue dynamically
 - Maximized the cores for short queue
 - Depending on the resource and queue status
 - Two ways of tuning steps
 - increase or decrease gradually
 - increase or decrease sharply depending on number of free cores in queue
- setup threshold for short queue
 - Max_queue_run
 - •Min_queue_run

Resource Utility Tuning

Before Now

Storage -- Lustre

 7 file systems share a similar (commodity server DAS SATA disk arrays) architecture, totally 7 MDSs,34 OSSs, 3.3 PB

 5 used for physics data of different experiments, 1 for individual data, 1 for temporary data storage

Long rebuild time of aged disk arrays

- After intensively usage for more than 3 years, failure rate of disks increased dramatically
- With continuously heavy IO load, rebuild was very slow.

Rebuild Time	Disk Size	RAID size	IO load
10 days	3 TB	24	High
4 days	3 TB	24	Low
2 days	3 TB	12	Low
1 day	2 TB	12	Low

- During this period, possibility of another disk failure is very high
- Simultaneous failure happened 3 times during last 6 months
- For the safety of data, we have to suspend the service of related Lustre file system, and wait for the rebuild to finish.

Solution and Plan

- In the last six month
 - Retired 40 five-year old disk arrays consists of 1 TB SATA disks
 - Resize all the 24-disk-RAID to 12-disk-RAID
 - Migrate some hot data from aged Lustre file system/disk pools to newer ones
- Setup a disk retirement and data flow policy, to guarantee data availability with low disk cost.
- Your suggestions are warmly welcomed.

Status of Gluster File System

- Finished annual inspection: doing fsck on each bricks
- Scale upgrade of the File system
 - I/O server: 4->5
 - Bricks:23->39
 - Capacity: 186TB->315TB
- Scalable and dynamic distributed metadata service is developed to solve
 - When data server is busy, "ls" performance lost
 - With bricks increase, "mkdir", " rmdir"performance changed worse
 - Directory tree inconsistent
- Optimization and bugs fixed in data rebalance
- Monitoring: Add new nagios monitoring plugins to check brick target status

Outline

- Infrastructure Update
- Local Cluster Status
- EGI Site Status
- Management & Operation
- Summary

BEIJING-LCG2 Site report

Reliability and Availability

Reliability And Availability

Site Update

- EMI3 update
 - Updated: Cream, WN, Argus, BDII, Myproxy
 - To be updated: dCache, DPM, LFC, APEL,
- All Nodes upgraded to SL6.5
- Disks for CMS replaced to 4TB * 24 Array
- Disks for ATLAS will be replaced next month
- All grid server will be replaced this year
 - Old server had been run over 5 years

Outline

- Infrastructure Update
- Local Cluster Status
- EGI Site Status
- Management and Operation
- Summary

Management and Operation

- Device database created
- Power accounting for each experiment
- Half of machines are managed by puppet
- ROC is under construction

Perfsonar@ihep

- Two hosts for perfsonar
 - Perfsonar.ihep.ac.cn for Bandwidth test
 - Perfsonar2.ihep.ac.cn for Latency test
- Network performance tuning is in progress between IHEP and Eur. Sites
 - http://twiki.ihep.ac.cn/twiki/bin/view/ InternationalConnectivity/IHEP-CCIN2P3

Test Members			
hcc-ps02.unl.edu	T2_US_Nebraska		
193.109.172.190	SPAIN		
perfsonar-	UK		
ps01.gridpp.rl.ac.uk	OK .		
lhc-	lhc-bandwidth.twgrid.org		
bandwidth.twgrid.org			
perfsonar-ps.cern.ch	CERN		
perfsonar.nersc.gov	NERSC		
perfsonar-ps.cnaf.infn.it INFN			
perfsonar1.cc.kek.jp	KEK		
psonar2.lal.in2p3.fr	psonar2.lal.in2p3.fr		
heplnx128.pp.rl.ac.uk	heplnx128.pp.rl.ac.uk		
ps.lhcopn-ps.sara.nl	SARA		
perfsonar-ps2.ndgf.org	Nordic countries		
157.82.112.69	Japan		
perfsonar2.ihepa.ufl.eduperfsonar2.ihepa.ufl.edu			
sunn-ptl.es.net	1		
210.72.16.8	210.72.16.8		
perfsonar-	perfsonar-bw.sprace.org.br		
bw.sprace.org.br			
perfsonar-ps-	perfsonar-ps-02.desy.de		
02.desy.de			
193.48.99.79	IN2P3-20121006		
cmsperfsonar01.fnal.govFNAL			
perfsonar-de-	KIT		
kit.gridka.de			

Summary

- Devices running out of guarantee
 period caused a lot of problem
 - Disk array rebuild time
 - unstable WN
- A big challenge

THANK YOU!

QUESTION?