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© Introduction

© Scheduling of multicore jobs
@ Problems
@ Definition of the scheduling problem
@ Optimization
@ Estimation of job requirements
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Introduction

Going rapidly towards many core systems:
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Figure: The 20 most common CPU types in the Worldwide LHC Computing Grid
at the Tier-1 level (used by LHCb during reprocessing 2012)
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Introduction

Main Problem:
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@ Throughput sometimes limited by memory
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Main Problem: Memory Footprint
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Two trends:
@ Memory per core on future manycore system

@ Increasing LHC beam energy

= Parallelization: Sharing of datasets
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Introduction

Main Problem: Memory Footprint

@ Memory has constantly increased

@ Throughput sometimes limited by memory

Two trends:
@ Memory per core on future manycore system

@ Increasing LHC beam energy

= Parallelization: Sharing of datasets

Detector description
Magnetic fieldmap

Conditions
XML DB elements
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Introduction

First step: Parallelization of software
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Introduction

First step: Parallelization of software
o GaudiMP

AthenaMP

GaudiHive

multithreaded CMSSW

o Geant4
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Introduction

Speedup of LHCb parallel reconstruction jobs:

Speedup
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Introduction

Speedup of LHCb parallel reconstruction jobs:

Nehalem EP 8 core Westmere EX 40 core

40 40

30 30

Speedup
Speedup

20 20

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Number of processes Number of processes

We probably don’t want to assign all cores to such a job
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@ Limit the number of processes for each job
@ Jobs scale differently on different micro architectures
@ Job options and characteristics of events impact runtime and speedup

@ Grid site or experiment problem?
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Limit the number of processes for each job

Jobs scale differently on different micro architectures
@ Job options and characteristics of events impact runtime and speedup

@ Grid site or experiment problem?

What we need:
@ Scheduler within experiment’'s WMS, which takes care of:
e Runtime prediction

o Job properties (number of processes)
e Optimize scheduling decision such that overall throughput increases

o Backfilling
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Definition of the scheduling problem

Moldable job model: A scheduler has to choose the appropriate degree
of parallelism for a job depending on certain criteria

Objective Function:
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Definition of the scheduling problem

Moldable job model: A scheduler has to choose the appropriate degree
of parallelism for a job depending on certain criteria

Objective Function: C
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Definition of the scheduling problem

Moldable job model: A scheduler has to choose the appropriate degree
of parallelism for a job depending on certain criteria.

Objective Function: C — ane,

n:
s(n;) !
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Definition of the scheduling problem

Moldable job model: A scheduler has to choose the appropriate degree
of parallelism for a job depending on certain criteria

J
Objective Function: C — Zt’mef n; Z(

Jj=1

s(nj))

time; time;

)on

Lost due to gaps

leb

Time in HS06

Rauschmayr (CERN)

Core Number

Lost due to non linear speedup

2.0

Time in HS06

Scheduling of Multicore Jobs

6 8
Core Number

10

12 14

May 20, 2014

14 / 26



Optimizing the scheduling problem

@ Predict runtime, memory demand, speedup for each job
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Optimizing the scheduling problem

@ Predict runtime, memory demand, speedup for each job

@ Define degree of parallelism of each job such that

MemoryFootprint < RAM
p NumberOfJobSlots
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Optimizing the scheduling problem

@ Predict runtime, memory demand, speedup for each job

@ Define degree of parallelism of each job such that

MemoryFootprint < RAM
p NumberOfJobSlots

© Order list of jobs
@ Define schedule

© Increase partition size of single jobs OR modify position within the
schedule: if objective function improves keep the modification
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Optimizing the scheduling problem

@ Predict runtime, memory demand, speedup for each job

@ Define degree of parallelism of each job such that

MemoryFootprint < RAM
p NumberOfJobSlots

© Order list of jobs
@ Define schedule
© Increase partition size of single jobs OR modify position within the

schedule: if objective function improves keep the modification

In order to solve step 5: Constraint Programming, Local Search Methods,
Probabilistic Methods
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Constraint Programming: IBM Cplex Solver

Build a tree with all possible combinations

@ Each leaf = 1 solution = 1 schedule
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Constraint Programming: IBM Cplex Solver

Build a tree with all possible combinations

@ Each leaf = 1 solution = 1 schedule

o Constraint propagation:

J . J
time;
Z /mej nj<C ( E n; -jobj.running(t)> < nCores  Vt in [0, tmax]

=1 s(nj) j=1
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Constraint Programming: IBM Cplex Solver

Build a tree with all possible combinations

@ Each leaf = 1 solution = 1 schedule

o Constraint propagation:

J . J
time;
Z /mej nj<C ( E n; -jobj.running(t)> < nCores  Vt in [0, tmax]

s(nj) =

=t

root

(Jb1 ) (Jb2 )

( Jolb 2 ) ( Jolb 1)

( Jolb 3 ] ( Jolb 3 )
l l

[ Schedule 1 ] [ Schedule 2 ]
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Local Search: Hill Climbing

Define a start schedule
@ Create a list of candidates

@ Pick the next candidate, increase its number of processes by +1

© Define new schedule:
o if throughput increases keep solution

e if not remove item from candidates

@ Repeat step 2-3 until no candidates left
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Local Search: Hill Climbing - Test run

video.mp4 video.mp4
(o) Start Schedule (p) Optimize Schedule
Loss in throughput: 14.2% Loss in throughput: 3.1%
Placed jobs: 126 Placed jobs: 128
Link 1 Link 2
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out.mp4
Media File (video/mp4)


out2.mp4
Media File (video/mp4)

https://www.youtube.com/watch?v=U8BZkUjdd-o
https://www.youtube.com/watch?v=PHwgGKs8nhE

Probabilistic Local Search: Simulated Annealing

Similar to Hill Climbing, but:

o Create more random solutions
@ Accept worse solutions with certain probability

@ Acceptance probability decreases over time
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Comparison

Constraint Program- | Hill Climbing Simulated Annealing
ming

Solution Global Optima Local Optima Local Optima

Memory runs easily out of | hundreds MB hundreds MB
memory

Runtime several days few minutes depends on parame-

ters
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Comparison

Constraint Program- | Hill Climbing Simulated Annealing
ming
Solution Global Optima Local Optima Local Optima
Memory runs easily out of | hundreds MB hundreds MB
memory
Runtime several days few minutes depends on parame-
ters

\ /

Mix of both to find better local optima
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Prediction of runtime, memory, speedup

Problems:

@ Estimation of job requirements is important
@ Production manager does it by hand
@ Underestimation: jobs will be killed

@ Overestimation: what to do with the remaining time
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Prediction of runtime, memory, speedup

Problems:

@ Estimation of job requirements is important
@ Production manager does it by hand
@ Underestimation: jobs will be killed

@ Overestimation: what to do with the remaining time
Solution:

@ A lot of data from prior jobs
o Find correlations

@ Define a history based estimation
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Prediction of runtime, memory, speedup

Most important features - Runtime:
@ Average multiplicity

@ Size of input file

@ Number of events

Average event size

@ Normalization factor of worker node
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Prediction of runtime, memory, speedup

Most important features - Runtime:
@ Average multiplicity

@ Size of input file
@ Number of events

@ Average event size

@ Normalization factor of worker node

Most important features - Memory:

@ File size

@ Number of events

@ But: cannot draw many conclusions from data (virtual memory)
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Prediction of runtime, memory, speedup

Most important features - Runtime:
@ Average multiplicity

@ Size of input file
@ Number of events

@ Average event size

@ Normalization factor of worker node

Most important features - Memory:
@ File size

@ Number of events

@ But: cannot draw many conclusions from data (virtual memory)

Speedup: Inferred
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Run time prediction

Analysing LHCb's reprocessing productions from 2011 versus 2012:

CPUTime - HEPSPECValue/ NumberOfEvents

Stripping 2011 versus 2012
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Runtime prediction

With linear regression runtime prediction can be improved up to 20%
compared to MLE

Update after 100 jobs

5

—— MLE

—— Linear Regression
4
3

Accumulated Error

0
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Job Number -10°

Figure: Accumulated error for the prediction of runtime
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Runtime prediction

Distribution of runtime values per event sorted by run number:

Normalized time per event

‘.‘D. x10°
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Jobs sorted by run number
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Questions?
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