
Experiences running jobs
in VMs on Vac

Andrew McNab
GridPP and

University of Manchester



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 2

Overview

● Running jobs on IaaS systems 

● Vacuum model

● Vac implementation

● Target shares

● Admin-friendly philosophy

● ATLAS and LHCb production jobs

● VM vs Batch efficiency measurements

● Multiprocessor support

● Future plans



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 3

IaaS models

Matcher &
Task Queue

VM factory

R
equests

for real jobs

Central
agents &
services

Batch VM. Runs
Job Agent to
fetch from TQ

User and 
production

jobs

Cloud Site

Several ways of using
IaaS clouds to get pilot

clients running

Fetch payload jobs
from task queues as we 

do with Grid+Batch

These give you the 
benefits of using VMs:

custom environment,
that's maintained by 

experiments

But lots of layers and 
multiple queues 

(including inside IaaS 
provisioning)

Pilot factory

Pilot VM. Runs
Job Agent to
fetch from TQ

Requests

for real jobs

VM
factory

Gatekeeper
(CREAM? 
Condor?)



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 4

Vacuum model

Matcher &
Task Queue

R
equests

for real jobs

Central
agents &
services

Pilot VM. Runs
Job Agent to
fetch from TQ

User and 
production

jobs

Vacuum
site

Instead of being created by the experiments, 
the virtual machines appear spontaneously
“out of the vacuum” at sites. 

Since we have the 
pilot framework, we 

can do something 
much simpler.

Strip the system 
right down and have 

each physical host 
at the site

create the 
VMs itself.

Infrastructure-as-a-Client (IaaC)

Ideally use same VMs as
with IaaS clouds



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 5

Vacuum model
● For the experiments, VMs appear by “spontaneous production in the 

vacuum”

– Like virtual particles in the physical vacuum: they appear, potentially interact, and 
then disappear

● From the CHEP 2013 paper: 

– “The Vacuum model can be defined as a scenario in which virtual 
machines are created and contextualized for experiments by the site 
itself. The contextualization procedures are supplied in advance by the 
experiments and launch clients within the virtual machines to obtain work 
from the experiments' central queue of tasks.”

● At many sites, 90% of the work is done by 2 or 3 experiments

– So a simple, reliable way of running their “baseload” of jobs is worthwhile

● cvmfs and pilots mean a small user_data file is all the site needs

– Experiments can provide a script to create the site's user_data 



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 6

Vac implementation

● On each physical node, Vac VM factory daemon runs to create and 
supply contextualization user_data to transient VMs

● Multiple VM flavours (“VM types”) are supported, ~1 per experiment

● Each site or Vac “space” is composed of autonomous factory nodes

– All using the same /etc/vac.d/*.conf files; supplied by Puppet, Chef, Cfengine, ...

● Factories communicate load info with each other via UDP

● Natively supports CernVM 2 (~SL5) and CernVM 3 (~SL6)

– Also provides a logical partition to the VM to use as fast workspace

● VMs on a NAT network, with the factory node at 169.254.169.254

● Vac assumes the VM will shut itself down if it has no work

– Vac can also check a heartbeat file and destroy stalled/idle VMs

– May add optional check on CPU usage too



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 7

Vac factory node and site architecture

VMs

Physical CPUs with VT-x

libvirt/qemu/kvm

vacd-factory vacd-responder

Linux kernel with kvm

Physical CPUs with VT-x

VM

VM VM

VM

VM

VM

“What are you doing?”
VMs

v-f v-r

VMs

v-f v-r

VMs

v-f v-r

VMs

v-f v-r

VMs

v-f v-r

VMs

v-f v-r

Vac space composed of identical factories



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 8

Target shares with Vac

● When a VM slot becomes available, the node decides how to fill it.

● The other Vac nodes are queried via UDP to discover what they are 
running, in units of HS06

● The node bases decision on its list of target shares for each VM type

– Uses a site-wide back-off procedure to veto VM types that don't have any work

● This approach is very simple, and means the factory nodes are 
autonomous

– Avoids a central management daemon which would be a single point of failure

● The target shares are instantaneous 

– They are fair, in that if all experiments submit lots of jobs, the site shares out the 
capacity according to the stated shares

– But quiet periods aren't credited and carried forward, so may need to adjust 
targetshares to achieve annual shares, say (as many batch sites do...) 



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 9

Admin-friendly philosophy
● Vac re-reads configuration and rebuilds its view of what the VMs are 

doing at the start of each cycle (60secs)

– Do not need to restart the daemon when changing things (eg via Puppet)

– Do not need to worry about daemon vs VM inconsistent states

– We frequently do RPM updates of Vac without disrupting production VMs

● Simple so reliable: boot failure rate is << 1/1000

● Proper man pages for vac command, vacd, vac.conf etc

● Admin Guide with examples and help with “gotchas”

● Sanity checks (eg NAT iptables set up?) and log file warnings

● Nagios monitor provided

● Factory nodes autonomous so can easily take sets of machines down

– Or deal with losing the power on one rack without this disturbing the others!

● Aim to be as simple to manage as using Apache to serve static files



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 10

ATLAS Panda jobs running on Vac VMs 



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 11

Ganglia monitoring of ATLAS Vac sites 



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 12

LHCb production Monte Carlo

ATLAS started 
working on Vac here!



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 13

Accounting

● Many sites need to report usage through APEL and EGI Accounting

● Well established for conventional gatekeeper+batch grid sites

– There is also an EGI Cloud accounting activity

● Vac records data by updating PBS/BLAH format accounting log files 
on each factory node when each VM finishes

● These are consumed by the normal APEL PBS log file analyzer and 
published in the same way as gatekeeper+batch resources

– 56,742 jobs and 300,364 Vac VM CPU hours logged to APEL so far

● In the future, intend to support direct reporting to central APEL service 
using ssm  (as ARC does)

● However, the log file approach does also allow other existing 
accounting analysis tools to be used



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 14

Efficiency measurements on VMs

● What is today's intrinsic cost of using VMs rather than real machines?

– Lots of hard work done by many people: VT-x, kvm, qemu-kvm, ksm, virtio

● Can get overall cpu/wall efficiency measurements from accounting

● At Manchester, these are comparable for Batch vs VMs

– So for April/May 2014, the weighted average ATLAS+LHCb efficiencies for batch 
and Vac VMs were both 92.0%

– That doesn't distinguish between setup CPU, overhead CPU, and payload CPU

● People have made direct benchmark comparisons or done test runs

– But can we measure this with routine workloads too?

● We have machines from the same 2010 purchase running both

– 288 VM slots on Vac; and ~1000 PBS batch job slots

● So can do direct comparison of efficiency of production payload jobs



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 15

VM vs Batch efficiency with LHCb MC
● LHCb Monte Carlo production is organised as JobGroups

– Each job in a JobGroup is part of one production, with the same parameters

– Expect similar amount of time in event generator, detector physics, reco etc

● We run enough jobs at Manchester that jobs from the same 
JobGroup will be run on both Batch and VM

– Sample was 5534 (3216+2318) jobs in 56 JobGroups, 15-22 May 2014  

● Using LHCb DIRAC monitoring of payload jobs, can calculate the 
CPU/Walltime efficiencies for the Batch jobs and for the VM jobs 
within the same JobGroup separately

● Can then take quotient to give VM/Batch efficiency ratio

– Also calculate statistical spreads within each group

● The machines we used are dual 6-core Westmere from 2010, with HT 
enabled, 2GB/slot, and running 24 batch jobs or 24 VMs



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 16

VM eff. / Batch eff., per LHCb MC JobGroup

96

97

98

99

100

101

102

103

104

Average 99.37%; Sigma from statistical spread 0.57%
15-22 May 

2014

56 LHCb MC 
JobGroups; 

5534 jobs

3216 Batch 
jobs; 2318 

VM jobs

 Machines:
12-core

Westmere,
HT enabled,

2GB/slot,
24 job or
VM slots

Bars are the 2 combined statistical spreads within each JobGroup



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 17

Multiprocessor VMs

● These are supported by Vac as a parameter in the node's 
configuration file

● Each factory node has one current value in force

● Can be changed at any time, and new VMs will be created using it

● Vac keeps track of existing VMs' geometry to avoid overcommitting

● VM processor count taken into account by targetshares mechanism

● This system is designed to allow dynamic repartitioning of a Vac 
space into, say, single processor and 8-processor VM subspaces

– Just update node's configuration parameter in Puppet etc and wait

● This parallels the dynamic partitioning models being evaluated by the 
WLCG Multicore Task Force for conventional batch systems

– Need to worry about the Masonry Problem when allocating processors in blocks



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 18

Vac provides machine/job features

● Proposed HEPiX protocol and current WLCG task force

● Allows site/host to communicate details of machine and the job slot to 
the job or VM

– HS06, shutdown time for VM/host, CPU and memory limits, ... 

● One key file per key/value pair, in one of two directories

● The Vac factory node offers these directories to its VMs via NFS over 
its internal private network

– Also provides a writeable NFS directory for log files, shutdown reason, heartbeat 
files etc 

● The basis for several scenarios for telling VMs and payload jobs what 
resources they have and how long they can run for

– Want graceful termination of VMs to avoid disrupting payload jobs 

– /etc/machinefeatures/shutdowntime always set using max_wallclock_seconds



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 19

Future plans

● Recruit more sites – you? 

● See if other experiments' VMs need alternative VM models 

● Support Cloud Init contextualization and EC2 metadata

– Admins can already set this up, as the factory appears at 169.254.169.254

● Direct APEL 3 reporting using ssm

● More VM performance and benchmarking studies

● Reusable Puppet module

● Try with other VM classes: eg PROOF workers

● But avoid “feature creep”, since simplicity is a feature in itself



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 20

Summary

● Vac provides a simple way for sites to run VMs

● Demonstrated with ATLAS and LHCb production jobs

– Measured VM efficiency for MC is very good now

● Admin-friendly philosophy

● Multiprocessor VMs supported

● EGI accounting supported if needed

● We'd like to recruit more sites!

● And experiments that want us to try their VMs

● See http://www.gridpp.ac.uk/vac/ for RPMs, Yum repo, links to 
GitHub, docs, man pages etc



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 21

Extra slides



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 22

Vcycle
● Applies Vac ideas to OpenStack etc IaaS resources

● Experiment-neutral, and can be run by experiment or site or 3rd party

● Daemon that creates VMs using user_data file

● Watches what they do

● Backs off if they are failing to stay running

– No work? Fatal errors?

– Can also use shutdown messages to make better decisions

● Provides machine/job features via HTTP

● Running ~500 concurrent VMs with production jobs for LHCb on 
CERN central OpenStack

● Also running on GridPP Cloud at Imperial College

● Early days, but the code is in the vacproject GitHub area



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 23

Vac “Back Off” procedure

● To avoid overloading Matcher/TaskQueue, Vac implements “back off” 

● If a VM finishes with “no work” / “banned” / “site misconfigured” 
outcomes then it counts as an abort

– If no outcome given, then if a VM finishes after less than fizzle_seconds 
(600sec?) then it counts as an abort

● For a VM type (~experiment), if an abort has happened on any 
factory in the last backoff_seconds (600 sec?), then no more VMs of 
that type will be started

● After that, if an abort happened in the last backoff_seconds + 
fizzle_seconds and any new VMs have run for less than 
fizzle_seconds, then no more VMs of that type will be started

– ie try to run one or two test VMs to see if ok now 

● If backoff_seconds + fizzle_seconds have passed without more 
aborts, then can start VMs again as fast as slots become available



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 24

The Masonry Problem...



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 25

The Masonry Problem

Maximum length job, starting just before advance notice given

        Max length

Max length job

Max length job

Max length job

Max length

Short job

Shorter job

Short job Short job

Wasted
resources

Hard deadline for jobs to finishStart of advance notice



VMs on Vac -   Andrew.McNab@cern.ch   -   HEPiX, Annecy 26

OpenStack cloud site architecture


