

Linux Control Groups Support for Univa Grid Engine

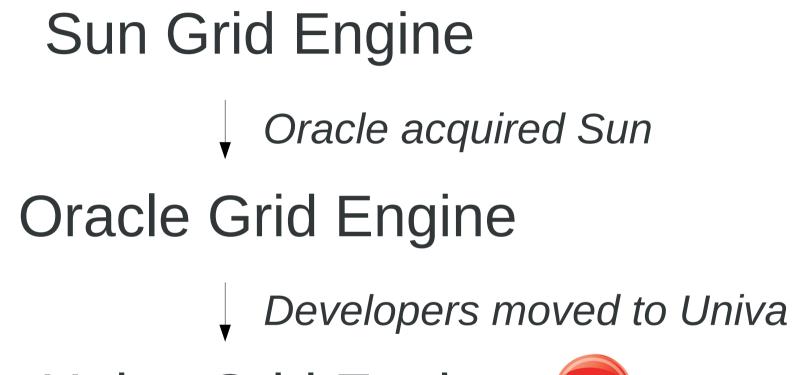
Daniel Gruber

dgruber@univa.com

Sun Grid Engine

Sun Grid Engine

Oracle acquired Sun



UNIVA

Sun Grid Engine *Oracle acquired Sun* Oracle Grid Engine

Developers moved to Univa

UNIVA

> 3 years **ACTIVE** Development

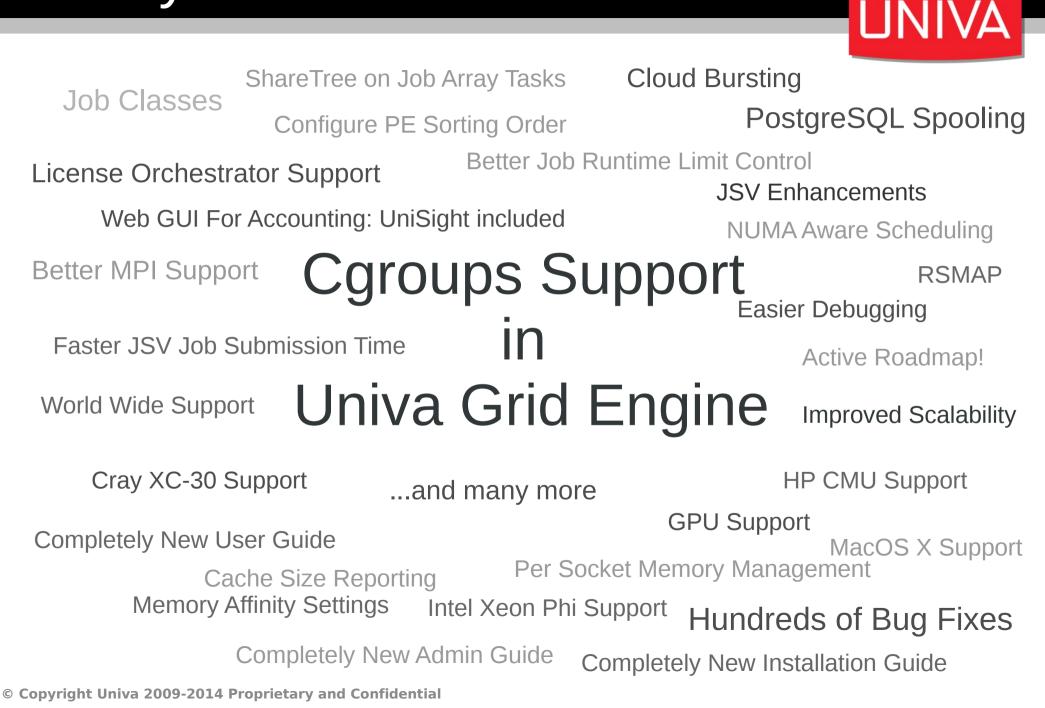
Univa Grid Engine grid engine

UNI

> 3 years **ACTIVE** Development

Developers moved to Univa

Univa Grid Engine grid engine



2013: Univa got all source code / IP / customer support for SGE / OGE from Oracle

Many Features added ...

UNIVA **Cloud Bursting** ShareTree on Job Array Tasks Job Classes PostgreSQL Spooling Configure PE Sorting Order Better Job Runtime Limit Control License Orchestrator Support **JSV** Enhancements Web GUI For Accounting: UniSight included NUMA Aware Scheduling Better MPI Support RSMAP Easier Debugging Faster JSV Job Submission Time Active Roadmap! World Wide Support Improved Scalability Cray XC-30 Support HP CMU Support ...and many more **GPU** Support Completely New User Guide MacOS X Support Per Socket Memory Management Cache Size Reporting Memory Affinity Settings Intel Xeon Phi Support Hundreds of Bug Fixes Completely New Admin Guide Completely New Installation Guide

Many Features added ...

About Linux cgroups

- Linux kernel enhancement
- Aggregates / partitions sets of tasks into hierarchical groups with specialized behavior
- **Cgroup** associates a set of tasks (and all child processes) with kernel subsystems
- **Subsystem** is a Linux resource controller that schedules resources or applies limits
- **Hierarchy** is a set of cgroups arranged in a tree
- Communication / configuration through file system interface

Why Grid Engine Needs it

- Irrevocable CPU isolation and NUMA domain isolation
- Safer job suspension
- Safer job reaping
- More possibilities to limit main memory and virtual memory of jobs

UNIVA

Supported Linux Subsystems

- Cpuset: Assigning set of CPUs and memory nodes to a set of tasks.
 - cpuset.cpus \rightarrow List of CPUs in the cpuset
 - cpuset.mems \rightarrow List of memory nodes in that cpuset
- **Memory**: Isolates memory behavior of a group of tasks from the remaining system.
 - memory.limit_in_bytes \rightarrow Hard memory limit for tasks
 - memory.soft_limit_in_bytes → Soft memory limit for tasks
 - memory.memsw.limit_in_bytes → Hard virtual memory limit
- **Freezer**: Starting / stopping sets of tasks without signaling them.
 - Freezer.state \rightarrow Set and get the status of the tasks

UGE Features using cgroups

UΝ

- Main memory limitation: qsub -l m_mem_free
- Virtual memory limitation: qsub -l h_vmem
- Automatic cpuset creation: **qsub -binding**
- NUMA domain isolation: **qsub -mbind cores:strict**
- Safe process reaping:
 - job gets deleted (qdel / h_rt / ...)
- Process suspension without sending signals::
 - qmod -sj
 - subordination
 - suspend_threshold

Grid Engine Configuration

- Homogeneous cluster: Global configuration
- Heterogeneous cluster: Host local configuration
- Configuration Example: qconf -mconf global

<pre>3 auto_user_oticket 4 rlogin command</pre>	0 builtin
5 execd params	PTF MIN PRIORITY=20,PTF MAX PRIORITY=0, \
6	SET_LIB_PATH=true, KEEP_ACTIVE=ERROR
<pre>7 rlogin_daemon</pre>	builtin
<pre>8 cgroups_params</pre>	<mark>c</mark> group_path=/sys/fs/cgroup
9	<pre>freezer=true freeze_pe_tasks=true killing=true \</pre>
10	forced_numa=true_h_vmem_limit=true \
11	<pre>m_mem_free_hard=true m_mem_free_soft=true \</pre>
12	min_memory_limit=200M
<pre>13 enforce_project</pre>	false
14 rsh_command	builtin

Automatic cgroup Creation

- Try to mount cpuset/memory/freezer (mount=true)
- Creation of UGE subdirectory in cgroup subsystems of execution host, if it does not exist yet.

\$cgroup_path/cpuset/UGE
\$cgroup_path/memory/UGE
\$cgroup_path/freezer/UGE

• During job **startup**:

Creation of a per job / array job task directory: \$cgroup_path/<subsystem>/UGE/<jobno>.<taskid>

Applying settings to cgroup Putting job (shepherd) into cgroup

• During job **shutdown**:

Removal of all processes (killing) and destruction of cgroup

Example: cpuset Subsystem

- Configuration needs to have set cpuset=true
- Job needs to request core binding:
 - Directly: -binding submission parameter
 - Indirectly: RSMAP topology masks
- Example:

```
daniel@mint14:~$ qsub -b y -binding linear:1 sleep 12345
Your job 5 ("sleep") has been submitted
daniel@mint14:~$ cat /sys/fs/cgroup/cpuset/UGE/5.1/cpuset.cpus
0
daniel@mint14:~$ qsub -b y -binding linear:1 sleep 12345
Your job 6 ("sleep") has been submitted
daniel@mint14:~$ cat /sys/fs/cgroup/cpuset/UGE/6.1/cpuset.cpus
1
```

UNIVA

Main Memory Limitation

- Limiting main memory consumption
- Main memory request: -I m_mem_free=512M
- Different behavior:
 - Soft limit → Linux kernel allows to exceed if there is no memory pressure in the system

UNIVA

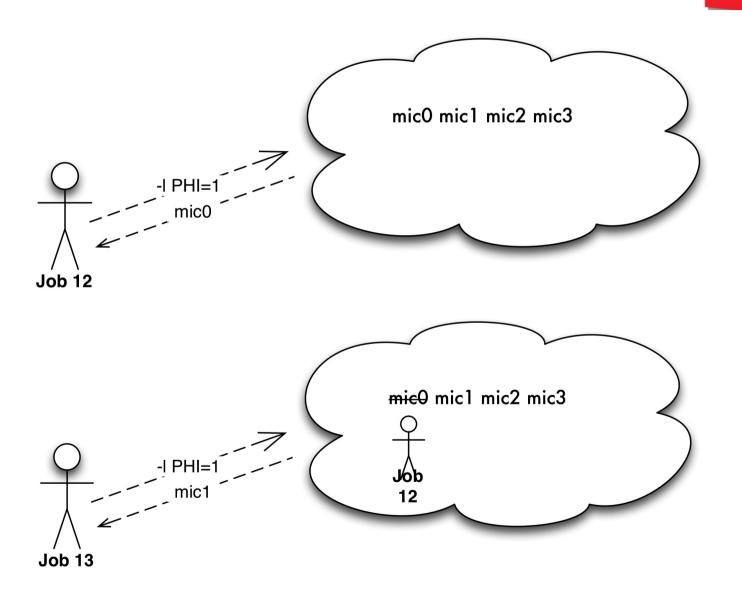
- Hard limit \rightarrow Out of memory for the job processes if exceeded
- Limiting virtual memory consumption: -I h_vmem=768M
- Prevent issues with too low memory requests: min_memory_limit=300M
- Limit access to NUMA node:
 - Requires: Core and memory binding
 - Configuration: **forced_numa=true**

RSMAP Resource Type

- New Univa Grid Engine 8.1 resource type RSMAP: Resource Map
- Like a **bag of strings** (can be anything)
- Manage co-processors and other per host or global resources
- Isolate multiple jobs on one host from each other (no performance degradation due to other jobs):
 - Now with cgroups support
- Schedule jobs to near resources NUMA aware scheduling (lower latency)
- More **flexible resource request** (decoupling from slots):
 - per HOST request possible

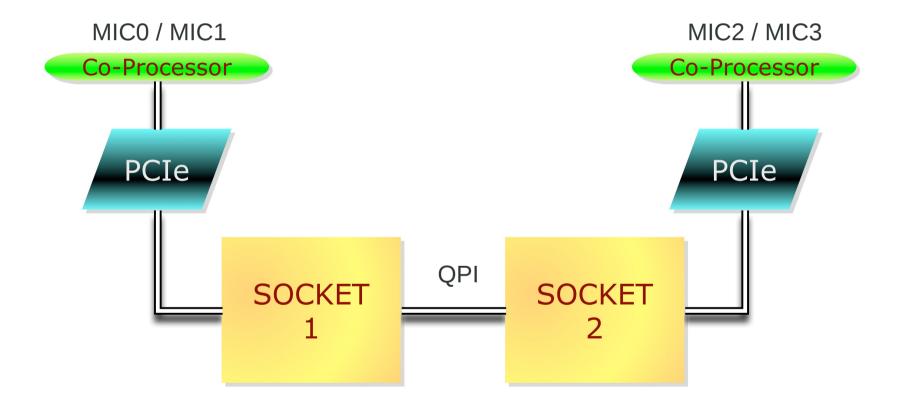
RSMAP Resource Type

• Resource declaration: **qconf -mc**


1 #name 2 #	shortcut		•	requestable			
3 PHI	PHI		<=		HOST	0	10000
4 arch	а	RESTRING	==	YES	NO	NONE	0

UNIVA

• Initialization of resource capacity:


daniel@mint14:~\$ qconf -mattr exechost complex_values "PHI=4(mic0 mic1 mic2 mic3)" mint14 Unable to find "PHI" in "complex_values" of "exechost" - Adding new element. daniel@mint14 modified "mint14" in exechost list

Mapping Jobs to Resources

UNIVA

PCIe NUMA Device Locality

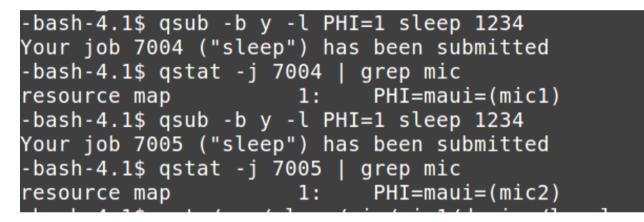
UNIVA

RSMAP Topology Masks

- Provides a mapping of a resource and specific compute cores (sockets).
- Attaches to each instance (string) a set of **allowed cores**.
- Topology string format (like m_topology): S C
- 2 Socket 4 Cores: SCCCCSCCCC
- Excluding cores when mic0 is selected: mic0:SccccSCCCC
- PCIe NUMA device locality
 - Memory and PCIe devices attached to sockets
 - Intel Xeon Phi offloading
 - Memory transfer between host and GPU
 - Faster access to discs / network / other PCIexpress resources

Example: Topology Masks

Configuration of 4 Intel Xeon Phi cards on dual socket host.


-bash-4.1\$ qconf	-se maui
hostname	maui
load_scaling	NONE
complex_values	<pre>PHI=4(mic0:SCCCccccSccccccc mic1:SccccCCCSccccccc \</pre>
	<pre>mic2:SccccccSCCCCcccc mic3:SccccccSccccCCC), \</pre>

• Based on /sys/class/mic/mic0/local_cpulist / numa_node

Example: Topology Masks

 During job submission: Specification of how many Intel Xeon Phis are going to be used.

UNIVA

Check cgroups cpuset assignment when job is running

```
-bash-4.1$ cat /sys/class/mic/mic1/device/local_cpulist
0-7,16-23
-bash-4.1$ cat /sys/class/mic/mic2/device/local_cpulist
8-15,24-31
-bash-4.1$ cat /cgroup/cpuset/UGE/7004.1/cpuset.cpus
4-7,20-23
-bash-4.1$ cat /cgroup/cpuset/UGE/7005.1/cpuset.cpus
8-11,24-27 _
```

Job Reaping

- Reaping based on cgroups: killing=true
- Cgroup contains tasks file: List of all processes which belong to cgroup (job). Uses cpuset cgroup without any limitation.
- Loops around tasks file entries and kill each process until tasks file is empty
- Safe: Guarantees that only process IDs which belong to job (i.e. are in one cgroup) are signaled.

Summary

- Cgroups in Univa Grid Engine isolates jobs
- No performance degradation due to badly behaving jobs

 $\Box NN$

- Schedules jobs near resources (RSMAP topology masks + memory binding)
- **Restrict main memory** usage
- Complementary safe suspend / resume
- Complementary safe **cleanup** of jobs processes
- Future enhancements: Based on customer feedback

Thank you very much for your attention!

Questions?

dgruber@univa.com