

Future of Batch Processing at CERN HEPiX Spring 2014

Belleman Jérôme – <u>Pék János Dániel</u> – Schwickerath Ulrich CERN IT May 2014

Status report

Outline

- 1. Reminder from last year
- 2. More HTCondor results
- 3. Potential integration of HTCondor

Section 1 Reminder from last year

http://cern.ch/go/Nnj8

Goals and concerns

CERN currently uses IBM LSF 7.0.6

Goals	Concerns with LSF
30 000 to 50 000 nodes	6 500 nodes max
Cluster dynamism	Adding/Removing nodes requires reconfiguration
10 to 100 Hz dispatch rate	Transient dispatch problems
100 Hz query scaling	Slow query/submission response times

Alternatives

- LSF 8/9 it is not said to scale much higher than LSF 7
- SLURM 2.6.4 concerns on scalability
- Son of GridEngine 8.1.6 slightly tested
- HTCondor 8.1.5 seems promising

Section 2 More HTCondor results

Testbed architecture (1)

Testbed architecture (2)

- 2 Central Managers
 - VM: 4 cores, 8 GB RAM
 - 1 negotiator, 50 collector instances
 - 1 gangliad, 50 + 1 (main) collector instances
- 20 Schedulers + submission nodes
 - VM: 4 cores, 8 GB RAM
- ~1300 Machines (worker nodes)
 - VM and physical
 - 48 slots forced by configuration → 62 500 slots

General experience (1)

- Configuration
 - + Fine-grained control over almost everything
 - + Macros: e.g. calculate queue size based on memory
 - + Nicely structured, and documented
 - Sometimes not that intuitive
 - MAXJOBRETIREMENTTIME for disable eviction
 - "Abundance of choices"

General experience (2)

- Automation, Puppetisation
 - + Self-registering decoupled components
 - + Python API
 - + Automate everyday operational tasks
 - + e.g. waiting until all job slots are claimed
 - + Plenty of useful user-space tools
 - + condor_status, condor_q, condor_on/off, condor_advertise, condor_submit, condor_rm, ...
 - + condor_sos: "prefix" for emergency operations

General experience (3)

Flexibility

- + No need of restart daemons almost ever
- + Easy and fast to add/remove worker nodes

CERN IT Department CH-1211 Genève 23 Switzerland

www.cern.ch/it

HTCondor addition and removal of WNs

General experience (4)

Scalability

- + Scales well horizontally in
 - + Number of job slots and nodes
 - + Number of jobs
 - + Submission rate and delay Submission on Condor

Submission on LSF

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

General experience (5)

- Scalability
 - Schedd and shadowd are memory-eager

 Scales poorly in query rate Query on Condor

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

General experience (6)

Fault-tolerance

- + Automatic fail-over works fast
- + No single-point-of-failure
- + Designed for heterogeneous infrastructures

Maturity, community

- + Feels robust and mature
- + Very active community
- + Frequent development releases
- + We're in touch with the HTCondor project lead

Section 3 Potential integration of HTCondor

Production architecture

Functional requirements

- To be implemented
 - Kerberos/AFS authentication support
- To be tested
 - Accounting
 - Host normalisation
 - Fairshare

Conclusion

- Scaling tests are reaching a conclusion
 - Host scalability tests carried out
 - Query load tests carried out
 - HTCondor is a strong candidate
- What's next
 - Integration
 - Pilot project

Questions?

