Ceph @ CERN: one year on...

Dan van der Ster (daniel.vanderster@cern.ch)

Data and Storage Service Group | CERN IT Department

HEPIX 2014 @ LAPP, Annecy

Ceph Architecture and Use-Cases

OpenStack + Ceph

- Used for Glance Images, Cinder Volumes and Nova ephemeral disk (coming soon)
- Ceph + OpenStack offers compelling features:
 - CoW clones, layered volumes, snapshots, boot from volume, live migration
 - Cost effective with Thin Provisioning
 - ~110TB "used", ~45TB * replicas on disk
- Ceph is the most popular network block storage backend for OpenStack
 - http://opensource.com/business/14/5/openstack-usersurvey

Ceph at CERN

- In January 2013 we started to investigate Ceph for two main use-cases:
 - Block storage for OpenStack
 - Other options being NetApp (expensive, lock-in) and GlusterFS
 - Storage consolidation for AFS/NFS/...
- We built a 250TB test cluster out of old CASTOR boxes, and early testing was successful so we requested hardware for a larger prototype...

3PB of Ceph

47 disk servers/1128 OSDs

Dual Intel Xeon E5-2650
32 threads incl. HT

Dual 10Gig-E NICs
Only one connected

24x 3TB Hitachi disks
Eco drive, ~5900 RPM

3x 2TB Hitachi system disks
Triple mirror

64GB RAM

5 monitors

Dual Intel Xeon L5640

24 threads incl. HT

Dual 1Gig-E NICs

Only one connected

2x 2TB Hitachi system disks

RAID-1 mirror

1x 240GB OCZ Deneva 2

/var/lib/ceph/mon

48GB RAM

df -h /mnt/ceph
Filesystem
Size Used Avail Use% Mounted on
xxx:6789:/ 3.1P 173T 2.9P 6% /mnt/ceph

Deployment

- Fully puppetized using forked upstream module: https://github.com/cernceph/puppet-ceph
- Automated machine commissioning and maintenance
 - Add a server to the hostgroup (osd, mon, radosgw)
 - OSD disks are detected, formatted, prepared, auth'd
 - Also after disk replacement
 - Auto-generated ceph.conf
 - Last step is manual/controlled: service ceph start
- Mcollective for bulk operations on the servers
 - Ceph rpm upgrades
 - daemon restarts

A "Dashing" dashboard

Code: https://github.com/rochaporto/dashing-ceph

SLS Monitoring

Ceph Storage Service 19 May 2014 Mon 09:49:08 Service information Part of (subservice of): full name: Ceph Storage Service IT/DSS services short name: Ceph Subservices group: IT/DSS none / not declared site: CERN email: ceph-admins@cern.ch Clusters, subclusters and nodes web site: → https://twiki.cern.ch/twiki/bin/viewauth/DSSGroup/CephP... cluster ceph beesly mon alarms page: > http://cern.ch/ceph/alarms.html cluster ceph beesly osd manager: Dan van der Ster 🧇 Depends on none / not declared Service availability (more) Additional service information (more) availability: Depended on by Num Pools: 20 percentage: 100% services that depend on this service: Operations Per Second: 4,972 status: available Cloud Infrastructure last update: 09:36:46, 19 May 2014 (13 minutes ago) expires after: 15 minutes rss feed with status how is availability measured or estimated: Availability is 100% when Ceph reports HEALTH OK, otherwise it is the percentage placement groups which can actively accept IOs. availability in the last 24 hours (more): 100 1 http://sls.cern.ch/sls/service.php?id=Ceph Sun 12:00 Mon 00:00

Example SLS plots

Potential Use-Cases

Ceph for Physics Data?

- RADOS is not a drop-in HEP storage system
 - No namespace
 - Object size limitations
 - No X509/kerberos
 - Much more ...
- (EOS/Dcache/DPM/...) on RBD would allow thin disk servers, but they still act as "gateways" to the data on Ceph
 - double/triple/quadruple network traffic
- CephFS is NFS-like, but it lacks strong auth (among other things). See our dev blueprint:

http://wiki.ceph.com/Planning/Blueprints/Firefly/Strong AuthN and AuthZ for CephFS

CASTOR & XRootD/EOS

- Exploring RADOS backend for these storage systems
- CASTOR needs raw throughput performance (to feed many tape drives at 250MBps each).
 - Striped RWs across many OSDs are important.
 - Rados Striper for CASTOR: https://github.com/ceph/ceph/pull/1186
- XRootD/EOS may benefit from the lack of a namespace to store O(billion) objects
 - Bonus: also http/webdav with X509/kerberos, possibly even fuse mountable.
 - RADOS FS: https://github.com/joaquimrocha/radosfs
 - Xrootd Plugin: https://github.com/joaquimrocha/xrootd-rados-oss
- Developments are exploratory / early stages.

Throughput testing

basic rados bench - saturate the network

```
[root@p05151113471870 ~]# rados bench 30 -p test write -t 100
```

Total writes made: 7596
Write size: 4194304
Bandwidth (MB/sec): 997.560
Average Latency: 0.395118

[root@p05151113471870 ~]# rados bench 30 -p test seq -t 100

Total reads made: 7312
Read size: 4194304
Bandwidth (MB/sec): 962.649
Average Latency: 0.411129

all-to-all rados bench

Striping across many objects gives high throughput performance

(Single-client) IOPS testing

4k randwrite iodepth=128 wbcache on

- VM: ~6000 4k randwrite iops to RBD vs ~100 iops on the local disk
- Total cluster capacity is ~20-30K iops (so we throttle the clients)

OpenStack Volumes & Images

- Glance: in production for >6 months
 - Only issue was to increase ulimit nofiles
- Cinder: in production since March.
 - ~400 volumes: >100TB allocated, ~45TB used,
 ~200TB including replicas

Growing # of volumes/images

Increasing IOPS, usually 5-6k now

Cinder Monitoring

- Throttling: OpenStack and qemu-kvm can throttle the block devices.
 - We use 400 iops_r, 200 iops_w, 80 mbps_w, 40 mbps_r
 - But this is probably too generous (Amazon EBS provides 100 IOPS)
 - We will scale this back soon to allow more users
- Latency: best case synchronous 64k write was 30-40ms
- With increased usage a 64k write can approach/exceed 100ms
- We log all IOs for analysis, for example on 8 May 2014:
 - 322,001,158 writes; 170,753,949 reads
 - 25% of writes were to the top four volumes.
 - 191,809,175 (74%) writes were 4kB.
 - 28% of reads were 512kB, 25% of reads were 4kB.

Why such high latency?

 Ceph writes synchronously to its OSD journal and asynchronously to the OSD filestore

Everything is written twice

Deployment question: Shared vs. dedicated journal devices

Image from http://www.sebastien-han.fr/

IOPS limitations

- Our config with spinning, co-located journals limit the servers to around 500 IOPS each
 - We are currently at ~30% of the total cluster IOPS
 - (and need to save room for failure recovery)

 Using SSDs journals (1 SSD for 5 disks) can at least double the IOPS capacity, and our tests show ~3x-5x burst IOPS

Scalability

- O(1000) OSDs seems to be doable
 - What about 10,000 or 100,000 OSDs?
 - What about 10,000 or 100,000 clients?
 - Many Ceph instances is always an option, but not ideal
- OSDs are scalable:
 - communicate with peers only (~100, no matter how large the cluster)
- Client process/socket limitations:
 - short lived clients only talk to a few OSDs no scalability limit
 - Long lived clients (e.g. qemu-kvm) eventually talk to all OSDs each with 1-2 sockets, ~2 processes.
 - Ceph will need to optimize for this use case in future (e.g. using thread pools...)

Other topics, no time

- 250 million objects test: 7 hours to backfill one failed OSD
- LevelDB troubles:
 - high cpu usage on a couple OSDs, had to scrap them
 - mon leveldb's grow ~10GB per week (should be 700MB)
- Backup: async geo-replication
- Object reliability: 2, 3 or 4 replicas; use the rados reliability calculator
- Slow requests: tuning the deadline elevator, disabling updatedb
- Don't give a cephx keyring to untrusted users: they can DOS your mon and do other untold damage
- Data distribution: CRUSH often doesn't lead to perfectly uniform data distribution. Use "reweight-by-utilization" to flatten it out.
- New "firefly" features to test: erasure coding, tiered pools
- RedHat acquisition: puts the company on solid footing, will they try to marry GlusterFS+Ceph?

Summary

- The CERN IT infrastructure is undergoing a private cloud revolution, and Ceph is providing the underlying storage.
- In nine months with a 3PB cluster, we've not had any disasters, and performance is at the limit of our hardware
 - For block storage, make sure you have SSD journals
- Beyond the OpenStack use-case, we have a few obvious and a few more speculative options: AFS, NFS, ..., physics data
- Still young, still a lot to learn, but seems promising.

