

Univa Grid Engine status at CCIN2P3

Hepix Spring 2014

Nadia Lajili and Suzanne Poulat

For CCIN2P3 Batch Team

Overview

- Team members
- Assessment of the change from Oracle GE to Univa GE
- Configuration: functionalities and numbers
- Multi-core jobs
- Future plans
- Requests to Univa

CCIN2P3

Batch team members: 1 FTE

- Batch team leader:
 - Suzanne Poulat
- System Administrators:
 - Aurélien Gounon
 - Vanessa Hamar
 - Mattieu Puel
- User Support and UGE administrators:
 - Bernard Chambon
 - Nadia Lajili
 - Rachid Lemrani

CCINS_{P3}

Change from Oracle GE to Univa GE

Oracle GE

- 2010 : First tests with SGE to customize the configuration
- March 2011 : cluster available for selected users
- March 2011 : Oracle bought SUN
- July 2011 : Oracle GE (OGE) in production
- But Oracle support was not satisfying :
 - Service not stable during several months,
 - No more product improvement
 - No visibility on the roadmap

Univa GE

- Fall 2012 : Evaluation of other Grid Engine suppliers
- Early 2013 : choice of Univa Grid Engine (UGE)
- June 2013 : UGE replaced OGE
- October 2013 : Univa acquired the source code, copyrights, and trademarks associated with the software from Oracle

Change from Oracle GE to Univa GE

- Before the migration :
 - Analysis: it is a version change, not a change of product
 - Mandatory patches: supplied rapidly by Univa
 - Configuration and tests :
 - Spooling into Postgres DB for robustness
 - Failover tests
 - Load tests during 7 days with six times our current running / pending jobs
 - Tools adaptation : minor changes for
 - Monitoring and Accounting
 - Operation scripts
 - Documentation

Univa support

- Reactive
- Direct access to developers

Change from Oracle GE to Univa GE

- Assessment
 - Successful migration
 - Stable service (only few incidents in a year)
 - Transparent for users
 - Good support
 - Visibility on the roadmap, scalable software
 - Active community (users forums, webinars)

Configuration - Nodes

Servers

- Operating System = Scientific Linux 6
- UGE Version = 8.1.6

Master

- Automatic restart procedure for qmaster process in case of no answer
- PostgreSQL spooling (dedicated server)
- ARCO writing to a PostgreSQL DB + internal tools to access data
- Accounting files in AFS space : one file per month and only 7 days in the current file

Shadow

Stopped after 2 outages

CCIN2P3

Worker Nodes

- Local disk space (\$TMPDIR) managed by XFS quota
- Stdout/stderr copied to user's HOME when job is DONE
- AFS as filesystem for common directory
- AFS token renewal in set_token_cmd (home made)
- GPFS access control to allow or deny access according to complex specification
 - Kernel module used by automounter (home made)
- Spool directory of the job kept 7 days for debug
- Cgroup integration
 - done in prologue for cpu (home made) ,
 - available functionality in version 8.1.7

Configuration – Functionalities and number

- Fairshare (two levels) on projects (200)
- Queues : 20
- Jobs flow regulation: via complexes (20) and intensive usage of Resource Quota Sets (400 lines)
- Load sensors for disk space and memory usage, integration in "load formula"
- Scheduler limitations: SCHEDULER_TIMEOUT, MAX_SCHEDULING_TIME, MAX_DISPATCHED_JOBS
- JSV: only used to force core binding on interactive jobs (qlogin)

Some numbers

- 19 944 virtual cores : one instance for all our needs
 - Parallel jobs : 5%
 - Sequential jobs : 90%
 - Multicore jobs : 5%
 - Interactive jobs (48 cores)
 - Local and grid (~70%) jobs
- Jobs
 - ~12 000 pending jobs, some are job arrays : 40 000 pending tasks
 - ~17000 running jobs, some are parallel: 19 000 used slots
 - > 110 000 ended jobs / day
 - > 600 000 qstat / day

LLINISH

CPU consumption 2013-2014 en Million hours HEP2006

CPU consumption 2013-2014 : Fraction LHC /Total

Number of running jobs during last 4 months

On dedicated machines (576 cores → 1024 cores)

- Used by ~10 groups :
 - local jobs : ~8 groups
 - Grid jobs :
 - Cms makes tests but no production
 - Atlas used 500 to 900 slots from January to April 2014

Multicore jobs

Current problem :

- Dedicated nodes
- Under-used machines or not enough slots depending on activity of the groups
- Various configurations tested :
 - Multicore + Sequential + Resource reservation active = Scheduling time multiplied by 10 X
 - Multicore + Sequential + Slot Urgency = multicore jobs remain disfavoured, jobs always waiting if too many slots X
 - Not Urgency or Resource reservation active = Slots always used by sequential jobs – Multicore always waiting X
- Conclusion at this moment :
 - Sequential and Multicore in separated machines
 - If more machines are needed they can be added within 24 hours

13

Future plans

- Cloud Integration in GE with UniCloud software
 - UniCloud in test since end of March
 - Possibilities tested :
 - Virtual machines as workers
 - Worker instantiation on the fly

But looks more intended to deploy whole clusters

Poorly documented

- What we expect
 - Mix monocore and multicore jobs without degraded performance
 - Get improved monitoring when the system is in trouble (slowness)
 - Improvement of qacct, qstat (foreseen in version 8.2)
 - Possibility to set number of maximum pending jobs per user
- Requests for enhancement from our customers
 - Merge qacct and qstat commands
 - Change task priority for an array job
 - Reject job submission when encountering impossible resource requirement specification
 - A way to grant a minimum of running jobs per user

Questions

Hepix Spring 2014

20/05/2014 CCIN2P3