
The Art of Running
HTCondor as a batch

system

(10 HTCondor Features
You Should Know)

Brian Bockelman
HEPiX Spring 2014

Swiss Army HTCondor
• HTCondor really is a platform for

high-throughput computing. The
number of ways it can be used is
quite immense!

• However, the bread-and-butter is
still often running it as a site’s batch
system.

• This talk covers 10 features every
sysadmin should be aware of if they
run HTCondor as a batch system!

• I start with the assumption that
everyone here knows the basics
of running a HTCondor system :)

If You Forgot…
HTCondor Pool

Central Manager

Collector Negotiator

Submitter

Schedd Worker Node

Startd

10 Live Monitoring
• condor_ssh_to_job allows

the user (or superuser!) to
SSH directly to the job’s
runtime environment.

• Great for hunting down and
debugging jobs.

• Does your site’s security
policy disallow interactive
access on the WN? In that
case, try condor_tail; this
allows you to tail any file in the
job’s sandbox.

9 Scalable Job Updates
• Every N minutes (N defaults to 5), an update is pushed out of

some standard statistics (disk / CPU / memory used) from the
worker node to the scheduler.

• Users can now invoke the condor_chirp utility to push
custom attributes.

• The implementation is done in a scalable matter so users
aren’t able to overwhelm the system.

• Purpose is to allow for custom-purpose user monitoring.

• Initial use case is to allow CMS jobs to advertise how many
events have been processed.

8 Flexible Accounting
• HTCondor doesn’t provide a native accounting database. However, it

provides a number of accounting files.

• Job history for a schedd is viewable with the condor_history command.

• For integrating with the site’s accounting database, HTCondor can write
out a single file per job in the PER_JOB_HISTORY_DIR on the schedd.

• Setting PER_JOB_HISTORY_DIR on the worker node leaves a file per
job execution.

• Both directories are accessible via condor_fetchlog and the python
bindings.

• Having a file-per-job helps the accounting DB integration to know
which jobs have already been processed.

7 Security Friendly
• HTCondor has a lot of flexibility for both authz and authn.

• Authentication methods: FS, CLAIMTOBE (unauthenticated), GSI, KRB5, IP-
based.

• Strong authentication methods (GSI) can be combined with IP /
hostname restrictions.

• Authentication results in a HTCondor username (such as
bbockelm@unl.edu). GSI can callout to external libraries (LCMAPS) for
final mapping.

• Once authenticated, site can have various policies for what the user is
authorized to do. Example:

• SCHEDD.ALLOW_WRITE = *@unl.edu, $(HOSTNAME)@daemon.unl.edu

mailto:bbockelm@unl.edu
http://unl.edu
http://daemons.unl.edu

Maybe not so friendly?
(to be fair, Nebraska is the most complex example possible)

6 Firewall Friendly
• A HTCondor cluster involves many daemons - all of which must

communicate with each other over TCP.

• All but collector default to a randomly-selected port, which
traditionally made the firewall configuration a big headache.

• If you enable the condor_shared_port daemon, it will, using
socket passing, aggregate all communication through a single
TCP port (9618).

• Greatly simplifies the firewall configuration!

• In the 8.3.0 / 8.3.1 timeframe, we hope to make shared_port
enabled by default.

5 Customizable output
formats

• Hate the condor_status or condor_q output formats?

• Starting in 8.1.6, the sysadmin can customize the
default output formats.

• Provide a format file as specified at https://
htcondor-wiki.cs.wisc.edu/index.cgi/wiki?
p=ExperimentalCustomPrintFormats; uses a SQL-
like syntax.

• Alternately, user can specify their own file.

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=ExperimentalCustomPrintFormats

condor_status - default

condor_status - custom

4 Hooks
• HTCondor can invoke sysadmin-provide scripts at various

points of the job’s lifecycle - pre/post and periodically while the
job runs.

• This can be used to provide a custom monitoring script or
setup/cleanup the job environment.

• The STARTD_CRON mechanism causes the startd to periodically
execute a script and publish the results in the machine’s
ClassAd; great for integrating health monitoring into HTCondor.

• The BENCHMARKS mechanism runs a script at node startup;
useful for normalizing CPU power for accounting purposes.

3 Ganglia Integration
• Starting in 8.1.0, HTCondor ships with the condor_gangliad;

this daemon polls the collector for various statistics and pushes
them into Ganglia.

• We ship with a set of sane default metrics; the admin can
customize any metric through the configuration file.

• Ganglia will not beat a hand-written, heavily-tweaked
monitoring system; we’re hoping this will cover 80% of the
need though!

• Don’t use Ganglia? If you provide a script that is command-line
compatible with gmetric, you can push these to any arbitrary
monitoring system.

2 Python Bindings
• Basically all client functionality is accessible

through a python module.

• Module invokes the appropriate C++ code
directly; no fork/exec of client tools.

• Goal is to be “pythonic”: failures are turned into
python exceptions, ClassAd types are converted
to their python equivalent types where possible.

1 Containers
• Container virtualization without us

• Over the past three years, we have been adding various container-based
features:

• cgroups: HTCondor creates a unique cgroup for each job. We use:

• freezer: Assists in killing all the processes in the job.

• cpuacct: Calculate total CPU used by job.

• cpu: Fairshare CPU usage between jobs.

• memory: Job memory accounting and limiting.

• blkio: Accounting of block IO caused by jobs (not very good in SL6).

1 Containers
• namespaces: Jobs are spawned with:

• PID namespaces: Only processes from the running job are visible; nothing from the
system or other jobs.

• FS namespaces: Certain system directories (/tmp, /var/tmp) can be overwritten with the
HTCondor scratch directory; only visible to the job.

• Network namespaces: (Not yet part of base HTCondor) Each job is allocated its own IP
address and network card, which is bridged to the host network for the duration of the
job.

• chroot: Sysadmin can setup multiple chroots (SL5, SL6) and allow the job to chose one.

• With combination of chroot and FS namespaces, there are no persistent directories the
job can write into and no writable directories visible to other jobs.

• In the end, jobs get the system resources they requested and are heavily isolated from others.

• I’m glad the rest of the Linux community has found containers!

The Artist Commune
• If there’s an art to running HTCondor, then surely

there must be an artist commune somewhere!

• You can find like-minded people at:

• #distcomp on IRC

• htcondor-users@cs.wisc.edu mail list

• Annually at HTCondor Week in Madison, WI.

mailto:htcondor-users@cs.wisc.edu

