CE/RW
\

Scaling Agile Infrastructure, Development and
Change Management

Ben Jones, HEPiX Annecy 2014

When the project no longer fits
into one meeting room, it’s not
just the infrastructure that has
to scale.

Scaling Al

Infrastructure: getting to 9K nodes (++)

Development: multiple groups making
changes, “operational” vs “feature” changes

Process: how to manage different
requirements for the speed of change.

Move fast and 9"t preak things

Puppet choke points

- Compilations on masters

« at scale, time to compile isn’t just convenience
for client, it's capacity of masters

- Submissions to puppetdb
- replace facts, replace_catalog, store report

- ENC (foreman)

Simple Puppet Infrastructure

/B
N

Load Balancer

&

Puppet Masters Foreman

Problems with original infra

Spikes in puppet compilation times make for
unhappy users
Most automatic puppet runs do nothing, whilst

people manually running puppet expect
something to happen, and quickly

Large foreman reports could overload
nodes, impacting Ul or ENC

Puppet Infrastructure split by
traffic type

S

«
Load Balancer Load Balancer
“interactive” ’
i Reports

_—

Puppet Masters Foreman
"batch”

ENC

PuppetDB catalog duplication

Every puppet run the catalog Is stored In
puppetdb

In theory, should check if something has
changed before storing new — wasn't
working

Catalog duplication was often < 5%

puppetdb 1.6 fixed performance issues with
catalog duplication and fact submission

Puppet file stats

Shared NFS for manifests of multiple puppet
masters

Puppet masters were very busy, with
timeouts at peak

strace showed huge numbers of
(unsuccessful) stats, with 82% dedicated to
resolving “types”

Patch backported from puppet 3.5, stat ops
for default compilation from 8331 to 1381

CPU utilization on punch/puppet/master/batch :l
100 §
%20 ,.
.’.
80
3
70 o
50
= 50
a0
E1v]
20
10
Tee Ved Thu Tri
= Usex aver: 18.47 max: 59.26 min: S5.06 curz: 22.19
Bl Syutes aver: 17.27 pax: 43.53 =in: 1.22 cury: 3.48
" Rice aver: 2.9%a sax: 10.51= ain: 0.0 z:321.86u
dle aver:=43.05 =ax:92.50 nin:160.08n curx:73.07
- 10 wNaic aver:136.05= zax:461.%n nin: 11.49a curr:217.27a
w NG avex: 0.00 sax: 0.00 min: 0.00 curr: 0.00
" soft IRQ aver: 67.30m max: ¥1.74m man: 22.02% curr: 46,03
d Column + FFamrmat «
1]
i 30D
200
Ity Iy 5 l»:ll-llp'-' Fai baay S Way 11
2014

Tame

Upstream fixes problems

Some shaping of service necessary, but...

Big performance headaches have been fixed
by upstream

...though we’ve had to be prepared to use
patches / trunk

Original Dev practices too simple

Puppet modules are a tree on masters, so
Initial plan was to treat them as single
project

One git repo, branches of “production”

(master) and “dev’ map to puppet
environments

Can’t merge dev -> prod without freezing
Used cherry-pick to promote changes

o [devel] configure elasticsearch endpoint for kibana
remove lb configuration and flume from teststack
Adding virtual host for ermis
condor faster discovery
Do some clean=-up in my hostgroup and create a new o
condor hg, preemption disabled
Adding template folder to my hostgroup
Creating hostgroup for ermis.
hg_vobox new variable
extract all fields from nova api requests
add regex nova api for flume
kibana configuration data
add standalone kibana configuration
Added landb set integration
Fixed error with defined/undef
More complete configuration for myproxy
Updated hiera following changes in myproxy hg/module
Reorganized myproxy module
use sssd_filter_users so that values defined in dif
Add new 1tsb kojli repository
hg_bi rsyslog hiera server
remove useless notify statment
Al=-2281 - Open ssh poris so aladm can access.
remove setting of rules from puppet on request of sa
ada teststak - the openstack test instance

Easy cherry-pick

CE/RW
\ 5/22/2014 Document reference 14

AI-1413 - no latest but present

ethZ ang thi ised fo

acded at -t L. st D

added : -
.c!

g

s

Not so easy added

Now: modules are repos

Each module is its own repository

Hostgroup / Module split for services /
reusable code

Means that Service Managers and Module
Maintainers can move at own pace

the technical challenge was to create the
single tree of puppet manifests for the
puppet masters

We’'d hoped that puppet-librarian would do
this

jens

In the end we had to write our own librarian

Pup

net environments are collections of

module / hostgroup branches
- “Golden” environments: “production”, “ga’,

and user configurable environments
$ cat production.yaml $ cat ostest.yaml
a;;ault: master a;;ault: master
notifications: puppet-admins notif%cat%ons: os-tweakers

 osteroups:
grizzly: ostest
modules:

openstack: ostest

jens

- Environments are created based on default
branches and overrides

- Jens symlinks to correct unpacked branch of
each module

$ pwd
/mnt/puppetnfsdir/environments/ostest

$ readlink modules/openstack
«./../../clone/modules/openstack/ostest/code

$ readlink hostgroups/hg grizzly
eo/../../clone/hostgroups/grizzly/ostest/code

$ readlink modules/base
eo/../../clone/modules/base/master/code

&)

N/

Infrastructure Is code

Each module and hostgroup Is a git
repository, but it drives configuration

It's code, treat it like code, run it like a
software project

A running service Is configured by many
modules, with different groups developing
them

Need to manage risk and throughput
Throughput and stability isn't a 0-sum game

Strong QA process

- Mandatory process for “shared” modules

recommended for non-shared

module maintainers expected to maintain QA &
master branches

service managers expected to help with QA
node coverage

changes are QA'd for >= 1 week
anyone can press the “stop” button.

QA process

nent /| CRM-1

\-»‘ Catalog archlvmg enabled globally

7S E Comm
Detall
Type < Open (
resOived
Securty Level serng Dats (Onvy authenticated CERN users can see this

« Currently enforced only by convention and visibility

* Emergency workflow possible, with more visibility

Rate of change

- By default changes flow individually into QA

- Changes flow individually into Prod after
successful QA

- Production Is always moving

Frequent Release Events Rare Release Events
“Agile Methodology™ T “Waterfall Methodology™

Smoother Effort Effort Peaks
Less Risk High Risk

DBA’s corner when mentioning
automatic updates

0]
-

R >

P = B A (?j' 7.’.»"‘

Delivery = deployment

Continuous delivery doesn’t have to mean
continuous deployment

Whilst we believe that risk increases with
time and number of changes, it's for services
to determine best policy

Snapshots of configuration: jens pointing to
commits rather than branches for overrides

yum repo snapshots

Service Managers can “freeze” and upgrade
In their own time

Sraall upgr&das LA
FamI.LEL b-j
dowmain exp erks

VAT YAYATAIA A TAVATAIAYAYAY

-

“flow” upgrade model

Sraall ngr&cie;s L
PamLLi:L b-j
dowmain expeﬂ:s

x | | / h
Snapshot upgrade process ? oj

“snapskn[:" upgrade. model

Canaries

To manage rate of
change, essential to
detect failures

“Canary” machines
are exposed to
changes sooner
than other
machines in service

Can use “QA” or
delayed production

Continuous Integration

Still manual steps that could be automated
Most changes are feature -> QA -> master

Creating jenkins tests fro modules, and
some functional tests

Build pipeline to take feature branch and
merge to QA, then production

Make It easier to run with tests than without

Summary

Upstream works: we're not alone with scale

Change Is inevitable; suffering is optional

« Important to have levers for service managers to
configure rate of change

Let’s stop doing the machines job for them
« automate tests & build pipelines

Things | didn’t cover: software version drift,
run book automation, infrastructure data

