


Scaling Agile Infrastructure, Development and 

Change Management 

5/22/2014 Document reference 2 

Ben Jones, HEPiX Annecy 2014 



When the project no longer fits 

into one meeting room, it’s not 

just the infrastructure that has 

to scale. 

5/22/2014 Document reference 3 



Scaling AI 

• Infrastructure: getting to 9K nodes (++) 

 

• Development: multiple groups making 

changes, “operational” vs “feature” changes 

 

• Process: how to manage different 

requirements for the speed of change. 

• Move fast and don’t break things 

5/22/2014 Document reference 4 



Puppet choke points 

• Compilations on masters 

• at scale, time to compile isn’t just convenience 

for client, it’s capacity of masters 

• Submissions to puppetdb 

• replace_facts, replace_catalog, store_report 

• ENC (foreman) 

5/22/2014 Document reference 5 



Simple Puppet Infrastructure 

5/22/2014 Document reference 6 



Problems with original infra 

• Spikes in puppet compilation times make for 

unhappy users 

• Most automatic puppet runs do nothing, whilst 

people manually running puppet expect 

something to happen, and quickly 

• Large foreman reports could overload 

nodes, impacting UI or ENC 

5/22/2014 Document reference 7 



Puppet Infrastructure split by 

traffic type 

5/22/2014 Document reference 8 



PuppetDB catalog duplication 

• Every puppet run the catalog is stored in 

puppetdb 

• In theory, should check if something has 

changed before storing new – wasn’t 

working 

• Catalog duplication was often < 5% 

• puppetdb 1.6 fixed performance issues with 

catalog duplication and fact submission 

5/22/2014 Document reference 9 



Puppet file stats 

• Shared NFS for manifests of multiple puppet 

masters 

• Puppet masters were very busy, with 

timeouts at peak 

• strace showed huge numbers of 

(unsuccessful) stats, with 82% dedicated to 

resolving “types” 

• Patch backported from puppet 3.5, stat ops 

for default compilation from 8331 to 1381 

5/22/2014 Document reference 10 



5/22/2014 Document reference 11 



Upstream fixes problems 

• Some shaping of service necessary, but… 

 

• Big performance headaches have been fixed 

by upstream 

 

• …though we’ve had to be prepared to use 

patches / trunk 

5/22/2014 Document reference 12 



Original Dev practices too simple 

• Puppet modules are a tree on masters, so 

initial plan was to treat them as single 

project 

• One git repo, branches of “production” 

(master) and “dev” map to puppet 

environments 

• Can’t merge dev -> prod without freezing 

• Used cherry-pick to promote changes 

5/22/2014 Document reference 13 



Easy cherry-pick 

5/22/2014 Document reference 14 



Not so easy 

5/22/2014 Document reference 15 



Now: modules are repos 

• Each module is its own repository 

• Hostgroup / Module split for services / 
reusable code 

• Means that Service Managers and Module 
Maintainers can move at own pace 

• the technical challenge was to create the 
single tree of puppet manifests for the 
puppet masters 

• We’d hoped that puppet-librarian would do 
this 

5/22/2014 Document reference 16 



jens 

• In the end we had to write our own librarian 

• Puppet environments are collections of 

module / hostgroup branches 

• “Golden” environments: “production”, “qa”, 

and user configurable environments 

5/22/2014 Document reference 17 

$ cat production.yaml 
--- 
default: master 
notifications: puppet-admins 

$ cat ostest.yaml 
--- 
default: master 
notifications: os-tweakers 
overrides: 
  hostgroups: 
    grizzly: ostest 
  modules: 
    openstack: ostest 



jens 

• Environments are created based on default 
branches and overrides 

• jens symlinks to correct unpacked branch of 
each module 

5/22/2014 Document reference 18 

$ pwd 
/mnt/puppetnfsdir/environments/ostest 
 
$ readlink modules/openstack 
../../../clone/modules/openstack/ostest/code 
 
$ readlink hostgroups/hg_grizzly 
../../../clone/hostgroups/grizzly/ostest/code 
 
$ readlink modules/base 
../../../clone/modules/base/master/code 
 



Infrastructure is code 

• Each module and hostgroup is a git 

repository, but it drives configuration 

• It’s code, treat it like code, run it like a 

software project 

• A running service is configured by many 

modules, with different groups developing 

them 

• Need to manage risk and throughput 

• Throughput and stability isn’t a 0-sum game 

5/22/2014 Document reference 19 



Strong QA process 

• Mandatory process for “shared” modules 

• recommended for non-shared 

• module maintainers expected to maintain QA & 

master branches 

• service managers expected to help with QA 

node coverage 

• changes are QA’d for >= 1 week 

• anyone can press the “stop” button. 

5/22/2014 Document reference 20 



QA process 

5/22/2014 Document reference 21 

• Currently enforced only by convention and visibility 

 

• Emergency workflow possible, with more visibility 



Rate of change 

• By default changes flow individually into QA 

• Changes flow individually into Prod after 

successful QA 

• Production is always moving 

 

5/22/2014 Document reference 22 



DBA’s corner when mentioning 

automatic updates 

5/22/2014 Document reference 23 



Delivery != deployment 

• Continuous delivery doesn’t have to mean 
continuous deployment 

• Whilst we believe that risk increases with 
time and number of changes, it’s for services 
to determine best policy 

• Snapshots of configuration: jens pointing to 
commits rather than branches for overrides 

• yum repo snapshots 

• Service Managers can “freeze” and upgrade 
in their own time 

5/22/2014 Document reference 24 



5/22/2014 Document reference 25 



Canaries 

• To manage rate of 

change, essential to 

detect failures 

• “Canary” machines 

are exposed to 

changes sooner 

than other 

machines in service 

• Can use “QA” or 

delayed production 

5/22/2014 Document reference 26 



Continuous Integration 

• Still manual steps that could be automated 

• Most changes are feature -> QA -> master 

• Creating jenkins tests fro modules, and 

some functional tests 

• Build pipeline to take feature branch and 

merge to QA, then production 

• Make it easier to run with tests than without 

5/22/2014 Document reference 27 



Summary 

• Upstream works: we’re not alone with scale 

• Change is inevitable; suffering is optional 

• Important to have levers for service managers to 

configure rate of change 

• Let’s stop doing the machines job for them 

• automate tests & build pipelines 

• Things I didn’t cover: software version drift, 

run book automation, infrastructure data 

5/22/2014 Document reference 28 



5/22/2014 Document reference 29 
flickr: eddiedangerous 


