

B-physics In ATLAS An overview

Sagi Ben-Ami.

Technion-Israel institute of Technology.

On behalf of the ATLAS B-physics group.

B-Physics in ATLAS

ATLAS has a diverse B-physics program :

Measurements of weak rare B-hadron decays, CP-violation. 1.

$$(B_s^0 \to \mu^+ \mu^-, B_s \to J/\Psi \phi, \Lambda_b \to \Lambda \mu^+ \mu^-, etc.)$$

- Measuring production cross sections of beauty, charm 2. hadrons and onia ——— QCD models for the LHC.
- B-mesons and B-baryons properties ——— knowledge of 3. spectroscopic and dynamical aspects of B-physics.

Complementary information regarding NP

Four periods:

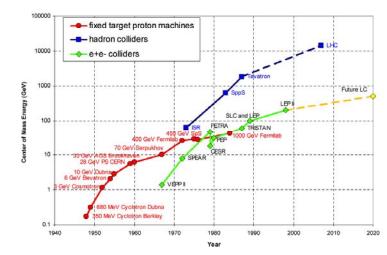
1. 10-100 pb⁻¹: understanding detector properties, measuring production cross sections...

$$B^+ \rightarrow J/\psi K^+ \dots$$

12. 0.2-1 fb⁻¹: Bhadron properties, new decay limits par example.

$$B_s^0 \rightarrow \mu^+ \mu^- 1^{st} \lim it$$

3. 10-30 fb⁻¹: production and decay properties of B-hadrons.

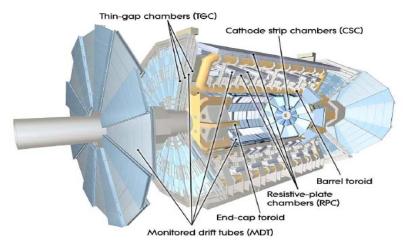

$$B_s^0 \rightarrow \mu^+ \mu^- 1^{st}$$
 lim it $B_s^0 \rightarrow \mu^+ \mu^-, B_s^0$ system, etc.

4. 100 fb⁻¹ each year.

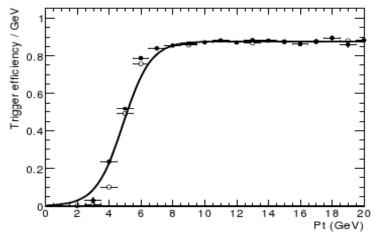
Rare decays.

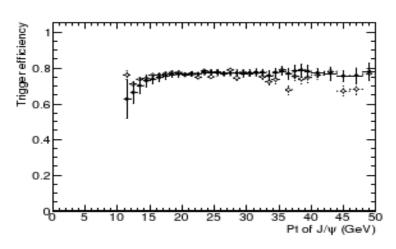
- When compared to B-factories:
- 1. Study the rare B_s^0 decays and Λ_b .
- 2. Rare decays with extremely small Br.
- 3. Differential distributions for rare dimuonic decays.
- When compared to the Tevatron:
- 1. The LHC will produce 50 times more bb events.
- When compared to the LHCb:

- 1. Capability of working in a much higher luminosity.
- Capability of working with pileup events.
- 3. Less affected by K and π decays in flight.


Atlas Trigger

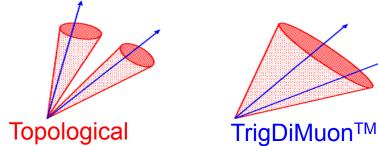
- ATLAS will be working in an unprecedented luminosity.
- Challenge: Extract signals from among the large QCD background.
- We need to keep an acceptable trigger rate, while keeping high trigger efficiency to study low-p_T physics.
- ATLAS use a three level trigger which will reduce the trigger rate to 100Hz, with an event size of 1.3Mbyte.




Level1 Muonic trigger

- Dedicated fast detector:
- 1. TGC and RPC for muonic trigger.
- 2. EM-calo trigger.

- Decision in 25ns, (latency 2.5µs) reducing the rate to 75kHz.
- Challenge: measure the efficiency of the of the event selection.
- •Tag-and-probe™: di-muon decay allows us to probe the trigger efficiency.



→ ATLAS has six different p_T thresholds @LVL1.
The trigger is ready for first collisions.

Muon Trigger – Level 2

- LVL2 trigger: Based on fast software, rate reduced to 1-2KHz, out of which 5-10% goes to permanent storage.
- ATLAS has two Level-2 di-muon trigger Algorithms:
 - Start from a di-muon trigger at level-1 which produce Rols.
 - → Topological.Mainly for high luminosity.
 - Start with a single muon trigger and search for two muons in a wider Rol.
 Search for tracks from the ID out to the MS.
 TrigDiMuonTM.
 Mainly for low luminosity.

Threshold	Chain	TrigDiMuon		Topological			
(Luminosity)	starting	Efficiency	J/ψ	Total	Efficiency	J/ψ	Total
	from	(%)	rate	rate	(%)	rate	rate
		(70)	(Hz)	(Hz)	(70)	(Hz)	(Hz)
4 GeV	level— l	71	1.17	3.1	51	0.8	24
(10^{31})	muFast	70	1.15	2.7	43	0.7	-
	muComb	69	1.14	2.4	33	0.5	0.6
6 GeV	level— l	74	43	151	56	32.5	357.5
(10^{33})	muFast	66	38	114	25	14.5	-
	muComb	59	34	109	15	8.7	9.3

- At low p_T triggering we prepared algorithms to remove muons from K and π .
- Instead of cutting out all low p_T muons we use topology of event to remove muons from K and π :
- 1. Extrapolation of the MS tracks back to the ID and looking for a discrepancy between the two tracks.
- 2. K and π muons decaying between the pixel and the SCT can be rejected by applying a cut on the χ^2 of the inner detector fit.

Sample	muFast rate (Hz)	muComb rate (Hz)	muComb + π/k cuts rate (Hz)
π/k	5050 ± 760	3530 ± 380	2860±410
b	5550 ± 600	4900 ± 400	4550 ± 430
c	6900 ± 700	5390 ± 420	5050 ± 450

6GeV Thresholds@ 10³³ luminosity

[→] Rejection 46% of Bg, loosing only 12.5% of signal.

be.

Study of rare decay: $B_s^0 \rightarrow \mu^+ \mu^-$

- SM lowest order contributions from box and penguin diagrams.
- SM predictions are tiny: meson has positive C-parity, helicity suppression.

$$Br(B_s^0 \to \mu^+ \mu^-) = (3.86 \pm 0.15) \times \frac{\tau_{B_s^0}}{1.527 \, ps} \frac{\left|V_{ts}^* V_{tb}\right|^2}{1.7 \times 10^{-3}} \frac{f_{B_s}}{240 MeV} \times 10^{-9}$$

$$Br(B_d^0 \to \mu^+ \mu^-) = (1.06 \pm 0.04) \times \frac{\tau_{B_d^0}}{1.527 \, ps} \frac{\left|V_{td}^* V_{tb}\right|^2}{6.7 \times 10^{-5}} \frac{f_{B_s}}{240 MeV} \times 10^{-10}$$

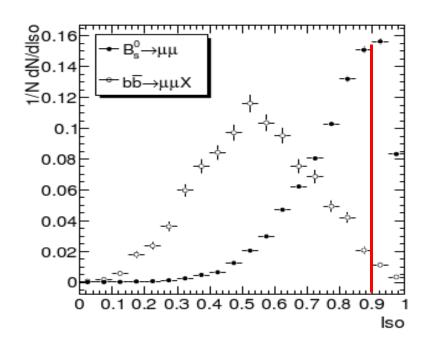
- May be enhanced by several order of magnitudes due to new loop diagrams: SUSY, Higgs doublet, extra gauge bosons, etc. (MSSM ~ tan⁶(β))
- CDF Limit: $Br(B_s^0 \to \mu^+ \mu^-) < 5.8 \times 10^{-8}$ (95% *CL*)

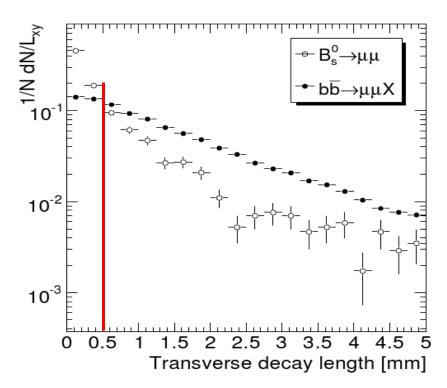
The method

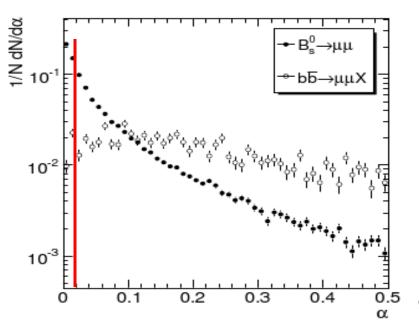
■ The signal will be normalized to $B^+ \to J/\psi(\mu^+\mu^-)K^+$:

$$Br(B_s^0 \to \mu^+ \mu^-) = \frac{N_{B_s}}{\alpha_{B_s}} \Box \frac{\alpha_{B^+} \delta_{B^+}}{N_{B^+}} \Box \frac{f_u}{f_s} Br(B^+ \to J/\psi K^+) Br(J/\psi \to \mu^+ \mu^-)$$

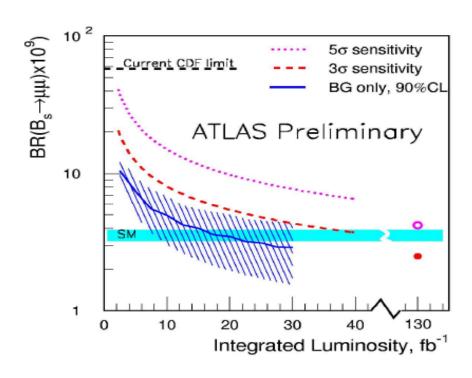
- Triggering on B_s→µµ
 - LVL2: Required mass of combined opposite charge muon tracks less than 7GeV.
 - LVL2: Muons should be fitted to a common vertex.


$$Ef(L1*L2) = 0.52$$
 $Ef(EF w.r.t L2) = 0.88$ $Ef(Overall) = 0.46$


- Startup strategy
- ■Tuning of selection and Bg estimation procedure with 1fb⁻¹of integrated luminosity.
- ■Irreducible contributions will be determined on the base of study of hadron/muon misidentification probability.
- ■Study of reference channel in order to check MC description.



•Offline cuts:


- -Transverse decay length of candidates.
- -Pointing angle between flight direction and DV direction.
- -Track isolation.
- -Asymmetric mass window.

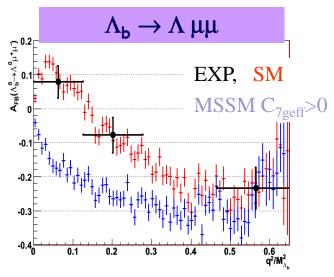
Results

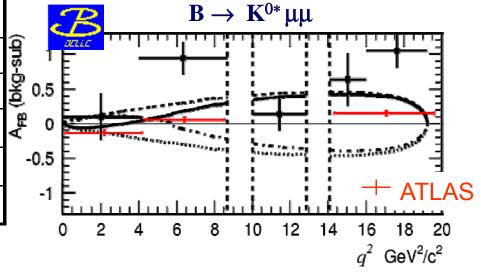
•With 2 fb⁻¹: Br<10⁻⁸

•3σ evidence : 3 years@10³³

•5σ evidence : First year@10³⁴

Discr. variable	$B_s^0 \rightarrow \mu \mu$	$bb \rightarrow \mu \mu X$		$B_s^0 \to K\pi$	$B_s^0 \rightarrow K \mu V$
Iso > 0.9	0.24	(2.6 ± 0)	$\cdot 3) \cdot 10^{-2}$		
$L_{xy} > 0.5mm$	0.26	$(1.4 \pm 0.1) \cdot 10^{-2}$	$(1.0 \pm 0.7) \cdot 10^{-3}$	n/a	n/a
$\alpha < 0.017 rad$	0.23	$(8.5 \pm 0.2) \cdot 10^{-3}$	(1.0 ± 0.7) - 10	11/4	11/4
Mass in $[-\sigma, 2\sigma]$	0.76	0.079			
TOTAL	0.04	$0.24 \cdot 10^{-6}$	$(2.0 \pm 1.4) \cdot 10^{-6}$		
Events	5.7		14^{+13}_{-10}	0.015	0


Table given for 10fb¹


ATLAS potential for Exclusive semi-muonic rare decays b →d,sμμ

Variety of exclusive channels that will benefit from the di-muon very detailed ATLAS trigger.

Dedicated talk by Cristina Adorsio on Wednesday

30 fb ⁻¹	δA _{FB} (1- 6)GeV ²	Signal events
$ extbf{B} ightarrow extbf{K}^{0*} \mu \mu$	4.8%	2500
$B_s \rightarrow \phi \mu \mu$	6%	900
$B^+ o K^{+*} \mu \mu$	5.2%	2300
$B^+ \rightarrow K^+ \mu \mu$	3.%	4000
$\Lambda_b \to \Lambda \mu\mu$	6%	800

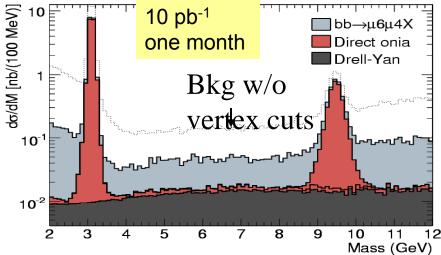
Atlas potential in CPV in $B_s \rightarrow J/\psi \Phi$

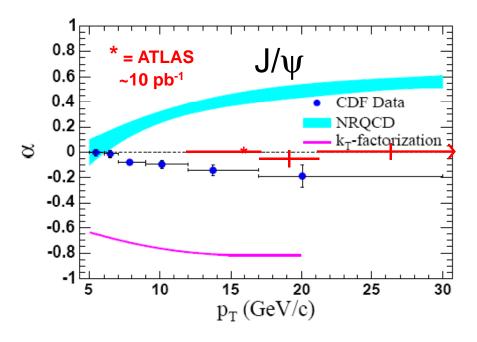
Method:

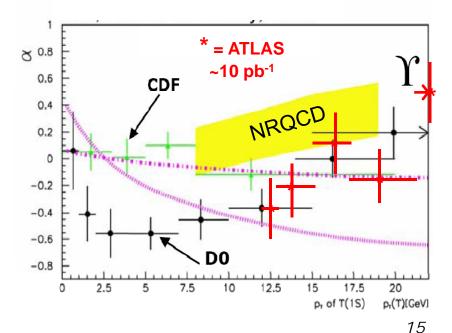
- Simultanious maximum likelihood fit for parameters: phi_s, Γs, ΔΓs, A[⊥],A ||, δ1,δ2.
- •Experimental inputs: 3 angles, proper decay time, flavour tag; background fraction and composition.
- •Independent measurement of Δms in flavour explicit channel.

Error on	ATLAS	
Years / Luminosity	30 fb-1	
φ _s	0.067	
ΔΓs	13%	
Гѕ	1%	
A	0.9%	
A⊥	3%	
∆m _s (ps-1)	Fixed 17.77 +- 0.12	
δ1	Fixed B _d -J/y K*	
δ2	и	

sensitivity after 30 fb⁻¹:


(3 years)
$$\delta(\phi_s) = 0.067$$


----- can be evidence of NP


Selected examples of B measurements at very early stage. (<100 pb⁻¹)

ATLAS measurements of Onia cross section and polarization

Dedicated ATLAS talk will be given by Else Lytken tomorrow.

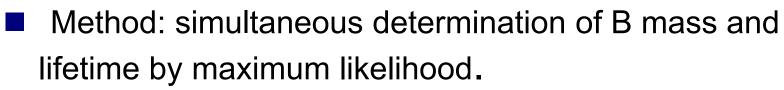
$$B_s^0 \rightarrow J/\psi \phi$$
 and $B^0 \rightarrow J/\psi K^{*0}$

- Very early measurement with exclusive B-decays: serve to test ATLAS detector performance.
- Already at 10pb⁻¹ (1-2 month) B masses and lifetime measurements by reconstructing exclusive decays. Serve to test detector performance understanding.

Method:

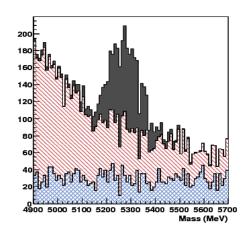
Use soft cuts — → no secondary vertex displacement cuts.

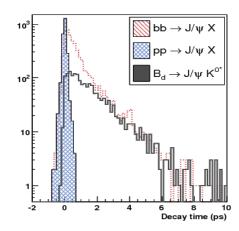
What we give:


Background from prompt J/ψ decays will be enhanced.

What we get:

avoid bias from misalignment and vertexing algorithms.


Still will be able to measure lifetime with precision needed to test alignments.



	Selected candidates expected with 10 pb^{-1}
Signal $B_d^0 \to J/\psi K^{0*}$	1024
$pp \to J/\psi X$ background	1419
$b\bar{b} o J/\psi X$ background	3970

■ 11 parameter fit to mass and proper decay time.

$$L = \prod_{i=1}^{N} \left[\frac{n_{sig}}{N} \times p_{sig}(t_i, m_i) + \frac{n_{bck1}}{N} \times p_{bkg1}(t_i, m_i) + \frac{1 - n_{sig} - n_{bck1}}{N} \times p_{bkg2}(t_i, m_i) \right]$$

Result for 10 pb⁻¹:

Life time precision of 10% will allow serve to test detector performance understanding Other channels:

B⁺ \to J/ψK⁺ 6% with 10 pb⁻¹ B_s \to J/ψΦ 10% with 100₁ pb⁻¹