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Dipole picture.
Golec-Biernat and Wusthott (GBW) model.
Geometrical scaling.

Evolution of the DGLAP from the saturation line.




Virtual photon-proton scattering :

dipole picture

Approximation justified for very high energy-low x.
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Virtual photon-proton total cross section
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Geometric scaling

1) Property of the dipole cross section:

dipole cross section depends on a single variable
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Geometric scaling

1) Property of the dipole cross section:
dipole cross section depends on a single variable

[ef(x,r) = o0 g(r @s@:))J \rczs(@

2) Property of the dipole formula for the total cross section:
rescale the integration variable " (neglecting the quark masses)

[Uv*p(xaQZ) = O-'y*p(T)J = Q°
Q3 (x)

Note that both conditions are necessary
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Modulo logarithmic terms

Geometric scaling should be valid at small x and not
too large Q only!
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Figure 1: Experimental data on o,+, from the region < 0.01 plotted versus the scaling
variable T = Q?R2(z).




In each bin of scaling variable
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x and Q values
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In each bin of scaling variable

Region where scaling 1s nontrivial
are data points with different (outside this region data are close in x and Q)
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Figure 1: Experimental data on o,+, from the region < 0.01 plotted versus the scaling
variable T = Q?R2(z).




In each bin of scaling variable

Region where scaling is nontrivial
are data points with different (outside this region data are close in x and Q)
x and Q values —>

Scaling motivated by the GBW

model + dipole picture.
Regularity observed in the data
independently of the model.
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Figure 1: Experimental data on o,+, from the region < 0.01 plotted versus the scaling
variable T = Q?R2(z).
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No scaling at large x,
as expected.
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Figure 4: Experimental data on 0., from the region x > 0.01 plotted versus the scaling
variable 7 = Q*R%(z).
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T Q%(x)

when plotted as a function of T
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Data indeed indicate nice regularity Q2
when plotted as a functionof 7T =
Bl

What 1s the dynamical origin of this regularity?

Saturation physics provides explanation to this
scaling property built in the dipole cross section
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Data indeed indicate nice regularity QQ
when plotted as a functionof 7T =
Bl

What 1s the dynamical origin of this regularity?

Saturation physics provides explanation to this
scaling property built in the dipole cross section
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If Ela (.Cl?) is not too large though, 1.e. close to
the saturation regime
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Compatibility of scaling with
DGLAP evolution

But we know that DGLAP works very well.

No need for nonlinear corrections at moderate and

high Q.
Saturation scale 1s relatively low.

Why scaling works outside the regime of very low

Q? (== 40




Geometric scaling vs DGLAP
i Q=q




Geometric scaling vs DGLAP
i Q=q

Q= Qs (37) saturation line
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Boundary condition

Saturation line: [ Q (X )= Q2 B )\.J

Dipole cross section and the gluon density
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Boundary condition

Saturation line: [ (X) Q 02x J

Dipole cross section and the gluon density

4 )

6(2,1/Q) ~ as(Q%)zg(x,Q%)/Q°

J

Scaling condition for the gluon density (at hixed Couphng first)
at the boundary given by the saturation line
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DGLAP in Mellin space
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Solution (fixed coupling) I
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Scaling condition
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Equation for the function gg(w)




Solution for the gluon density

Solution at small x:
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Solution exhibits approximate scaling.
Power controlled by the anomalous dimension.




Solution for the gluon density

Solution at small x:
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Solution exhibits approximate scaling.
Power controlled by the anomalous dimension.

Critical value of the saturation exponent:
determines the existence of scaling.

Example:in the DLILA approximation =
AN=4«
o
\)

scaling

A<4 C_YS no scaling




Running coupling case
Mellin representation
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Running coupling case

Mellin representation
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Violation of the geometric scaling for the case of DGLAP

with running coupling




Running coupling case
Mellin representation
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Violation of the geometric scaling for the case of DGLAP

with running coupling

Parameter which controls ol (Q? (Q?)) ln(QZ/Qi (ﬂ?))

violation of scaling




Summary

e Geometric scaling is expected to hold exactly when Q* < Q*(x).

e For Q° > Q?%(x) the non-linear effects in the evolution of the gluon
density should be small.

e We solved the DGLAP evolution equation for the gluon density
with the initial condition provided along the critical line Q% =

Qs ().

e For the fixed coupling the geometric scaling is preserved, provided
the exponent A > A..;;. For A < A..;; there is no scaling, since the
solution is controlled by the other branch point.

e In the running coupling case the scaling is only approximately
preserved. The violation can be factored out.

e In general, geometric scaling is expected to hold even in this case

provided In Q?/Q?(z) < In Q%(z) /A




