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WHAT WE ARE PLANNING TO DO
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Install detectors at 220 m and at 420 m from the
interaction points either side of ATLAS and CMS

to tag protons that are forward scattered in diffractive
and photon-exchange processes.



WHAT HERA HAS DONE SO FAR

(Among many other things) an extensive programme
of photoproduction and diffractive physics.

LEP has explored high energy photon-photon physics.
Our proposed LHC programme builds on both of these.
Much higher energies available than at HERA and LEP.
Hard processes are of particular interest at LHC

(Soft processes probably not easily triggerable.)

At LHC we can study double diffractive processes.
(A taste of this already at the Tevatron.)



EXCLUSIVE CENTRAL PRODUCTION
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The standard example is illustrated. The missing mass
of the two protons gives a precision measurement
of the mass of the centrally produced state.

Usually much more precise than from reconstruction
in the central detector.



EXCLUSIVE CENTRAL PRODUCTION

Note that in these models

there is considerable sensi- ||

tivity to the proton gluon
PDFs.
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Unfortunately the SM Higgs near 120 GeV has a
rather low accepted and triggered cross section.
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SUSY SIMULATION
(A. Pilkington)

Simulate MSSM  h—bb
at 120 GeV (ATLAS),
+ suitable analysis cuts.

[£ =60 fb'l (top) P
[£ = 300 fb-1 (middle)
+ effect of overlap bgd.
Use fast timing detectors

to remove overlap bgd.
L =100 fb-1 (bottom)

nOW giving 5_0‘ discove ry. 0:‘100 110 120 130 140 JMSC()GeV)
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Simulate in CMS system pp—ppXW. Select leptonic
W decay channels.
For 1 fb-! several thousand events are expected.
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High energy protons are quite efficient at radiating
photons. Kinematically resembles diffractive scattering
but with smaller p; transfer to the proton. Overtakes
double diffraction at W = 1 TeVW.

Diffraction mainly produces gluon jets, photoproduction mainly quark jets.
Little interference between the two processes (V. Khoze, priv. comm.)



vy PHOTOPRODUCTION
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Cross sections for
various yy processes.

The dimuon process
may be good for LHC
luminosity monitoring.

W+W- has a large cross
section of 100 fb.

ZZ only by anomalous
couplings. But if heavy
H—-ZZ, yy— is a small
background.



vy PHOTOPRODUCTION
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Examples of SUSY processes in photon photon
interactions.



# events / 15 GeV
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Simulation of chargino and slepton channels.
[chargino, slepton(L), slepton(R), ]
same lepton flavour (1), different flavour (r).
SUSY scenario: LM1 = very light LSP, light
slepton and chargino.

Background from WW will be challenging.



yp PHOTOPRODUCTION

WH mechanism in SM can be enhanced in some
models — probably not a discovery channel.

Look for anomalous single top via FCNC.
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OTHER PHYSICS CHANNELS

- High P+ jet production - QCD tests - hard

pomeron-pomeron scattering. Note that the
g-q final state is suppressed at low quark masses.

— Further study of nature of the pomeron

— White pomeron tests (A. R. White): a new
symmetry group QCDg is asserted which implies
more quarks, strong pomeron-W,Z coupling

and no Higgs (there is an alternative mechanism).

— LHC should see proliferation of W, Z production
and the forward programme is essential to test this
coupling.



EXPERIMENTAL
ASPECTS
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EXPERIMENTAL ASPECTS

Space is tight around the beam pipe.
Distance of closest silicon approach is crucial.



ACCEPTANCES
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420 + 420 acceptance falls off at 150 GeV but
peaks at 120. For higher central masses we need
the 220 m system (distance at 420 fixed at 5mm
in right-hand plot.) Good acceptance values!



MASS RESOLUTION

L (c) Combined
B 253 + smear meas. ang. lurad
6 6) + smear meas. ang. Zurad

)

(5)

Mass Resolution GeV

_I | | - | | - | | - | | - | | - | L1l | | - | L1l | | - | L1l | 1
0 40 60 80 100 120 140 160 180 200 220 240
Mass of Higgs (GeV)

Reconstructing the mass of the centrally produced

object from the two tagging photons at 420/220 m.
M2 = 4(py — P1)(Po — P2)

(Calculate from measured proton trajectories, and incorporate

experimental uncertainties.)




CONCLUSIONS

Forward tagging opens up a wide range

of diffraction and photoproduction processes,
following from the HERA experience and
extending it to much higher energies.

Discovery potentials and study of known
physics processes.

A major new area for the LHC.



