Two-photon and photon-hadron interactions at the LHC

Joakim Nystrand
Department of Physics and Technology, University of Bergen, Norway

HERA AND THE LHC
4th workshop on the implications of HERA for LHC physics

26-30 May 2008
CERN
Central vs. Ultra-peripheral Collisions

This talk:

\[b > \text{or} \gg 2R \implies \]

Electromagnetic interactions
Electromagnetic Field of a Relativistic Charged Particle

Fermi 1924: The effect of the electromagnetic field of a relativistic particle is equivalent to a flux of photons with a continuous energy spectrum. (hep-th/0205086)

Pulse width $b/\gamma c \leftrightarrow$ the spectrum contains photons with $\hbar \omega < \gamma \hbar c/b$

Quantum Mechanical derivation 1935 by Weizsäcker, Williams. ⇒ Weizsäcker-Williams method

We can calculate $n(\omega)$ through a Fourier transform.
Ultra-peripheral collisions

The photons and nuclei can interact in several ways

1. Electromagnetic interaction, two-photon

2. Direct photonuclear interaction, gamma+parton (γ+g→qq, γ+q→jet+jet)

3. Resolved photonuclear interaction (VMD), elastic or inelastic
Electromagnetic Interactions in p+p and A+A vs. in e+p(A) and e+e Collisions

Traditionally, photon-induced interactions have been studied with electron beams:
Two-photon interactions at PEP, Petra, LEP.
Photon-proton interactions at HERA and in fixed target expts w/ electron beams.

Why study them at hadron colliders?
- Higher photon energies than at any existing accelerator (LHC).
- An opportunity to study strong electromagnetic fields (coupling $Z\sqrt{\alpha}$ rather than $\sqrt{\alpha}$ in heavy-ion collisions).
- Interference between the photon-emitter and target.
- An opportunity to search for the Odderon.
The Equivalent Photon Luminosity

The spectrum of photons with energy $E_\gamma = x \cdot E_{\text{beam}}$ and virtuality Q^2 is given by

$$x \frac{dn_\gamma}{dx dQ^2} = \frac{\alpha Z^2}{\pi} (1 - x + 1/2x^2) \frac{Q^2 - Q_{\text{min}}^2}{Q^4}$$

Q_{min}^2 is constrained by x and the mass of the projectile. For hadron beams, the maximum of Q^2 is given by a form factor. In configuration space, this corresponds to $Q_{\text{max}}^2 = (1/R)^2$.

Integrating over all virtualities gives the following equivalent photon spectrum (energy in the rest frame of the target).
Electromagnetic interactions in heavy-ion interactions vs. in e⁺e⁻ and ep (eA)

• Directional symmetry. Both beams (nuclei) and can act as photon emitter or target.
• Away from y=0, the different photon emitter/target combinations give different contributions.
• Strong fields lead to high probability for emission of multiple photons.
No tagging of the nuclei

The coherence requirement limits the angular deflection to
\[\theta \sim \frac{0.175}{(\gamma \cdot A^{4/3})} \]

At RHIC
- \(\text{Au} \) A=197 \(\theta \sim 1 \, \mu\text{rad} \)
- \(\text{Si} \) A=28 \(\theta \sim 17 \, \mu\text{rad} \)

At LHC
- \(\text{Pb} \) A=208 \(\theta \sim 0.05 \, \mu\text{rad} \)
- \(\text{Ar} \) A=40 \(\theta \sim 0.3 \, \mu\text{rad} \)

\[\Rightarrow \text{Not possible to tag the outgoing nuclei. Might be possible with protons.} \]

Experimental method: Rapidity gaps, reconstruct the entire event, signal of coherence from low \(p_T \).
Particle production with Coulomb break-up

• Very high probability for emitting one soft photon, which can excite the target to a Giant Dipole Resonance.
• $P \approx 35-50\%$ in grazing Au+Au/Pb+Pb collisions at RHIC-LHC.
• $\approx 10 – 50\%$ of exclusive events are accompanied by break-up of one or both nuclei.
• Excitation to GDR leads to emission of neutrons which can be detected in ZDC calorimeters. \Rightarrow Useful as trigger

![Diagram a) vs. b)](image-url)
Example I: Production of Heavy Quarks

Consider the production of heavy quarks in a high-energy nucleus-nucleus collision. 3 production modes can be identified:

1. Hadronic production, dominated by $g g \rightarrow Q\bar{Q}$.
2. Photonuclear production, dominated by $\gamma g \rightarrow Q\bar{Q}$.
3. Electromagnetic production, $\gamma\gamma \rightarrow Q\bar{Q}$.

Estimated cross sections for these processes in Pb+Pb interactions at the LHC:

<table>
<thead>
<tr>
<th>Process</th>
<th>$\sigma(Pb + Pb \rightarrow QQ + X)$</th>
<th>$\sigma(Pb + Pb \rightarrow Pb + QQ + X)$</th>
<th>$\sigma(Pb + Pb \rightarrow Pb + Pb + QQ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hadroproduction</td>
<td>252 b*</td>
<td>1.2 b</td>
<td>1.1 mb</td>
</tr>
<tr>
<td>photoproduction</td>
<td>8.1 b*</td>
<td>4.9 mb</td>
<td>0.9 μb</td>
</tr>
<tr>
<td>two-photon production</td>
<td>~10^{-3}</td>
<td>~10^{-6}</td>
<td></td>
</tr>
</tbody>
</table>

Hadroproduction dominates, but the cross sections for photoproduction and two-photon production are not small in absolute terms.

> σ_{tot} because of production of multiple pairs in a single event.
Example II: Exclusive Production of di-lepton pairs

\[A+A \rightarrow A+A + e^+e^- / \mu^+\mu^- \quad \text{or} \]
\[p+p \rightarrow p+p + e^+e^- / \mu^+\mu^- \]

(\text{the nuclei/protons remain intact}).

A strong contribution from exclusively produced vector mesons (\(\gamma + \text{Pomeran} \)), followed by \(V \rightarrow e^+e^- / \mu^+\mu^- \).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Colliding system</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma + \gamma)</td>
<td>(e^+e^- / \mu^+\mu^-) ee, ep, pp/AA</td>
</tr>
<tr>
<td>(\gamma + \text{Pomeran})</td>
<td>(V \rightarrow e^+e^- / \mu^+\mu^-) ep, pp/AA</td>
</tr>
<tr>
<td>Odderon+Pomeron</td>
<td>(V \rightarrow e^+e^- / \mu^+\mu^-) pp/AA</td>
</tr>
</tbody>
</table>

⇒ If the \(\gamma + \gamma \) and \(\gamma + \text{Pomeran} \) contributions are well understood, pp (and AA) interactions can be used to search for the Odderon.

Trigger and Analysis Techniques

Special techniques are required to separate the signal from background.

- Low multiplicity.

- Rapidity gap between photon-emitting nucleus and the produced particles, suppression for a gap Δy: $\exp(-<dn/dy> \cdot \Delta y)$

 With $<dn/dy> \approx 2.5-3.5$ in pp at the LHC and $\Delta y = 2 \Rightarrow \sim 10^{-2} - 10^{-3}$ reduction.

- Coherence requirement for exclusive production in nucleus-nucleus collisions. If all produced particles are reconstructed, the total (summed) p_T is determined by the nuclear form factor, $p_T < \approx 50$ MeV/c, much smaller than the typical p_T for hadronic events, ≈ 350 MeV/c.

Background sources: Cosmic rays (triggering), beam-gas, low-multiplicity hadronic events.
Exclusive Vector Meson Production

\[A + A \rightarrow A + A + V \quad \text{or} \quad p + p \rightarrow p + p + V \]

- No accompanying hadronic interactions.
- Cross section factor \(\approx 100 \) larger than for two-photon production of mesons with similar mass.
- Electromagnetic excitation through exchange of additional photons, e.g. to a Giant Dipole Resonance, possible (in heavy-ion collisions).
The Vector Mesons are produced in a γ+Pomeron interaction. For the heavy states (J/Ψ, Ψ', Υ), the cross section, $\sigma(\gamma A \rightarrow VA)$ can be calculated from QCD (2-gluon exchange):

$$\left. \frac{d\sigma}{dt} \right|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}^e}{3\alpha M_V^5} 16 \pi^3 [xg(x, \frac{M_V^2}{4})]^2$$

For $V \rightarrow \text{e}^+\text{e}^-$, there is a background from $\gamma\gamma \rightarrow \text{e}^+\text{e}^-$. The cross section is thus a probe of the nucleon and nuclear gluon distribution function. High sensitivity because of $g^2(x, Q^2)$.

$$\left. \frac{d\sigma(\gamma A \rightarrow VA)}{dt} \right|_{t=0} = \left[\frac{G_A(x, M_V^2 / 4)}{G_N(x, M_V^2 / 4)} \right]^2$$
The A+A or p+p cross section is calculated from a convolution of the photonuclear/photon-proton cross section with the photon spectrum.

\[\sigma(A + A \rightarrow A + A + V) = 2 \int n(\omega)\sigma_{\gamma p \rightarrow Vp}(\omega)d\omega \]

- Weizsäcker-Williams photon spectrum.
- Scaling of \(\sigma(\gamma p \rightarrow Vp) \) to \(\sigma(\gamma A \rightarrow VA) \) using a Glauber-like model.

<table>
<thead>
<tr>
<th>Meson</th>
<th>Au+Au, RHIC (\sigma) [mb]</th>
<th>Pb+Pb, LHC (\sigma) [mb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho^0)</td>
<td>590</td>
<td>5200</td>
</tr>
<tr>
<td>(\omega)</td>
<td>59</td>
<td>490</td>
</tr>
<tr>
<td>(\phi)</td>
<td>39</td>
<td>460</td>
</tr>
<tr>
<td>(J/\Psi)</td>
<td>0.29</td>
<td>32</td>
</tr>
</tbody>
</table>
More calculations have followed, using slightly different approaches, including gluon shadowing, a full Glauber model for the absorption, the color dipole model etc.

\[\text{Pb+Pb} \rightarrow \text{Pb+Pb+V at the LHC} \]

<table>
<thead>
<tr>
<th>Model</th>
<th>(\rho^0) [b]</th>
<th>(J/\Psi) [mb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN</td>
<td>5.2</td>
<td>32</td>
</tr>
<tr>
<td>GM</td>
<td>10.1</td>
<td>41.5</td>
</tr>
<tr>
<td>IKS</td>
<td>4.0, 4.4</td>
<td>26.7, 26.3</td>
</tr>
<tr>
<td>FSZ</td>
<td>9.5</td>
<td>14, 85</td>
</tr>
</tbody>
</table>
Calculations have also been done for $p+p \rightarrow p+p+V$ and $p+\bar{p} \rightarrow p+\bar{p}+V$ (S.R.Klein, J.Nystrand PRL 92(2004)142003).

$$p+p \rightarrow p+p+V$$

<table>
<thead>
<tr>
<th>Energy (\sqrt{s})</th>
<th>J/Ψ [nb]</th>
<th>Ψ' [nb]</th>
<th>$\Upsilon(1S)$ [nb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.96 TeV</td>
<td>19.6</td>
<td>3.2</td>
<td>0.12</td>
</tr>
<tr>
<td>14 TeV</td>
<td>76</td>
<td>12</td>
<td>3.5</td>
</tr>
</tbody>
</table>

See also V.Khoze, A.D.Martin, M.G.Ryskin, EPJ 24(2002)459.
The VM rapidity distribution is given by

$$\frac{d\sigma}{dy} = k_1 \frac{dn_\gamma}{dk_1} \sigma_{\gamma p \rightarrow p} (k_1) + k_2 \frac{dn_\gamma}{dk_2} \sigma_{\gamma p \rightarrow p} (k_2)$$

where

$$k_{1,2} = \frac{1}{2} M V e^{\pm y}$$

Away from $y=0$, there is a two-fold ambiguity in the photon energy (k) and consequently in x.

Production is centered around mid-rapidity
Probing the nuclear structure functions

For a final state with invariant mass m_{inv}, the equivalent photon-proton center-of-mass energy is

$$W_{\gamma p}^2 = 2 \cdot m_{\text{inv}} \cdot E_p$$

and the corresponding Bjorken x is

$$x = m_{\text{inv}}^2 / W_{\gamma p}^2$$

Examples of x-ranges probed at mid-rapidity at the LHC (exclusive vector meson production):

- **J/ψ**
 - LHC pp: $x \approx 2 \cdot 10^{-4}$
 - LHC PbPb: $x \approx 6 \cdot 10^{-4}$

- **Υ**
 - LHC pp: $x \approx 6 \cdot 10^{-4}$
 - LHC PbPb: $x \approx 2 \cdot 10^{-3}$

For $y \neq 0$, $x = (m_{\text{inv}}^2/W_{\gamma p}^2) \exp(\pm y)$

Energy dependence of J/Ψ production

$Pb+Pb \rightarrow Pb+Pb+J/\Psi$

J/ψ RHIC 0.3 mb \rightarrow LHC 32mb factor 100
Experimental Results on Ultra-Peripheral Collisions
The Hadron Colliders RHIC, Tevatron and LHC

RHIC (1st collisions 2000):
Au+Au at $\sqrt{s_{nn}} = 200$ GeV; p+p at $\sqrt{s} = 200$ and 500 GeV.

Tevatron (1st collisions 1987):
p+p at $\sqrt{s} = 1.8$ and 1.96 TeV

LHC (1st collisions expected in 2008):
Pb+Pb at $\sqrt{s_{nn}} = 5.5$ TeV; p+p at $\sqrt{s} = 14$ TeV.
Experimental UPC results from RHIC so far:

1) ρ^0-production, $\text{Au}+\text{Au}\rightarrow\text{Au}+\text{Au}+\rho^0$ STAR Collaboration (C. Adler et al. PRL 89(2002)272302; B.I. Abelev et al. arXiv:0712.3320).

3) J/Ψ and high-mass e^+e^--pair production (D. d’Enterria et al. nucl-ex/0601001).
Two UPC trigger classes:
1) Topology trigger: Based on hits in Central Trigger Barrel, with a “topology” cut to remove cosmic rays.
2) Min. Bias trigger: At least one neutron in each ZDC (Coulomb break-up). Low mult. in Central Trigger Barrel.
Ultra-Peripheral Collisions in STAR at RHIC

Exclusive ρ^0-production, $\text{Au}+\text{Au} \rightarrow \text{Au}+\text{Au}+\rho^0$

Run 1 $\sqrt{s_{NN}} = 130$ GeV – Identification of coherent ρ^0.

Run 4 $\sqrt{s_{NN}} = 200$ GeV – Measurement of coherent and incoherent ρ^0.

Signal+background, unlike-sign pairs

background, like-sign pairs
Interference in ρ^0 Production

The production amplitudes will interfere (at $y=0$ $|A_1|=|A_2|$),
$|A_1+A_2|^2 = 2 |A_1|^2 [1 - \cos(p\cdot b)]$

The interference is destructive because of the $(-)$ parity of the photon.

Fit the observed t distribution (with $t=p_T^2$) to a function

$$\frac{dN}{dt} = Ae^{-kt} (1 + C[R(t) - 1])$$

$C = 0 \leftrightarrow$ no interference
$C = 1 \leftrightarrow$ interference

Ultra-Peripheral Collisions in PHENIX

The goal was to search for the process $\gamma+\text{Au} \rightarrow J/\Psi+\text{Au}$ in reactions $\text{Au}+\text{Au} \rightarrow \text{Au}+\text{Au}+e^+e^-$. There was also a contribution from $\gamma+\gamma\rightarrow e^+e^-$. The electrons were identified in the central tracking arm ($|\eta| \leq 0.35$, $\Delta\phi = 2\times90^\circ$).
Ultra-Peripheral Collisions in PHENIX

PHENIX (bird’s eye view)

Level 1 Ultra-Peripheral Trigger:
Veto on coincident BBC $|\eta| \sim 3 - 4$, Neutron(s) in at least on ZDC (E > 30 GeV), Large Energy (E > 0.8 GeV) cluster in EmCal.
Ultra-Peripheral Collisions in PHENIX

\[\frac{dN}{d\minv} \text{ (backgd subtracted)} \& \text{ with 2 fits of expected } e^+e^- \text{ continuum shape (normalized at } m_{ee} = 1.8 - 2.2 \text{ GeV/c}^2) \]

\[\frac{dN}{d\minv} \text{ after } e^+e^- \text{ continuum subtraction} \]

\[N_{J/\psi} = 10 \pm 3 \text{ (stat) \pm 3 (syst)} \]
Preliminary J/Ψ cross section

$$d\sigma_{J/\Psi}/dy\big|_{y=0} = 1/BR \times 1/(\text{Acc}|_{y=0} \cdot \varepsilon) \times 1/\varepsilon_{\text{trig}} \times 1/L_{\text{int}} \times N_{J/\Psi}/\Delta y =$$

$$= 1/(5.9\%) \times 1/(5.7\% \cdot 56.4\%) \times 1/(90\%) \times 1/120 \ \mu b^{-1} \times (10 \pm 3 \pm 3) =$$

$$= 48. \pm 16. \ (\text{stat}) \pm 18. \ (\text{syst}) \ \mu b$$

- Measured J/Ψ yield at $y=0$ consistent w/ theoret. calcs. [1,2]
- Syst. uncertainty: coherent e^+e^- continuum under J/Ψ (work in progress).
- Reduction of stat. errors need larger luminosity.
- Current uncertainties preclude yet detailed study of crucial model ingredients: $G_A(x,Q^2)$, $\sigma(J/\Psi$ absorption).

"Ultra-peripheral" Collisions at the Tevatron

Exclusive production of e^+e^- and $\mu^+\mu^-$ pairs. See yesterday’s talk by James Pinfold.

Exclusive $\mu^+\mu^-$ Candidates (1)

Many candidate events (334) have been found (CDF-II Preliminary)

We now have a ~25% increase of the signal due to a more efficient cosmic ray cut. – we await the blessing of the requisite plot.

MENU: CDF Motivation e^+e^- $\gamma\gamma$ $\mu^+\mu^-$ $J/\psi,\Psi',\Upsilon$ χ_c Odderon
"Ultra-peripheral" Collisions at the Tevatron

Three possible contributions to the process $p+p\rightarrow p+p+\mu^+\mu^-$:

Note: no feed down from χ_c to Ψ'.
A contribution from Odderon+Pomereron also possible.
”Ultra-peripheral” Collisions at the Tevatron

Calculations for the first two ($\gamma\gamma$ and γp):

\[\sigma(pp\rightarrow pp+J/\Psi(1S)) : \text{19.6 nb} \]
\[\sigma(pp\rightarrow pp+\Psi' (2S)) : \text{3.2 nb} \]
\[\sigma(pp\rightarrow pp+\mu\mu) : \text{2.4 nb (m}_{\text{inv}} > 1.5 \text{ GeV/c}^2) \]

Applying cuts on the $\mu^+\mu^-$:
\[p_T > 0.5 \text{ GeV/c} \]
\[\text{|}\eta\text{|} < 2.0 \]
\[\Rightarrow \]

Yield(Ψ')/Yield(J/Ψ) \approx 1:50

"Ultra-peripheral" Collisions at the Tevatron
Uncertainties and limits on the cross sections

\[
\frac{d\sigma}{dy} = k_1 \frac{dn_\gamma}{dk_1} \sigma_{\gamma p \rightarrow Vp}(k_1) + k_2 \frac{dn_\gamma}{dk_2} \sigma_{\gamma p \rightarrow Vp}(k_2)
\]

Two ingredients:
1) The photoproduction cross section, \(\sigma(\gamma p \rightarrow Vp)\)
 \(\Rightarrow\) Has been measured at HERA
 \(\Rightarrow\) A J/\Psi within \(|y| < 0.5\) at the Tevatron corresponds to
 \(60 \leq W_{\gamma p} \leq 100\) GeV.

2) The photon spectrum, \(dn/dk\), has to be calculated.
"Ultra-peripheral" Collisions at the Tevatron
Measurements at HERA and at lower energies

Data well described by
\[\sigma_0 = 4.1 \pm 0.4 \text{ nb} \]

\[\sigma(\gamma p \rightarrow J/\psi p) = \left[1 - \frac{(m_p + m_{J/\psi})^2}{W_{\gamma p}^2} \right]^2 \cdot \sigma_0 \cdot W^{0.65} \]
"Ultra-peripheral" Collisions at the Tevatron Measurements at HERA and at lower energies

The region $60 \leq W_{\gamma p} \leq 100$ GeV well covered by H1 and ZEUS measurements. Systematic error in σ: 6 – 9%.

26 – 30 May 2008 HERA-LHC Workshop, CERN Joakim Nystrand
”Ultra-peripheral” Collisions at the Tevatron

The photon spectrum

The photon spectrum of a single proton – calculable from the Form Factor

\[\frac{dn}{dk} = \int \frac{dn}{dkdQ^2} |F(Q^2)|^2 dQ^2 \]

In a pp collision, to exclude strong interactions, the calculations can be done in impact parameter space

\[\frac{dn}{dk} = \int \frac{dn}{dkdb^2} |1 - \Gamma(s, b)|^2 db^2 \]

Where \(\Gamma(s,b) \) is the Fourier transform of the pp elastic scattering Amplitude (Frankfurt, Hyde, Strikman, Weiss, Phys. Rev. D 75 (2007) 054009). This is roughly equivalent to setting a min. impact parameter \(b > 1.4 \) fm.
Ultra-peripheral Collisions at the Tevatron

Uncertainties and limits on the cross sections

Taking into account the error on $\sigma(\gamma p \rightarrow V p)$ (9%), and using the photon spectrum calculated from the Form Factor as a conservative upper limit gives

J/Ψ: $\sigma(pp \rightarrow ppJ/\psi) = 19.6^{+4.7}_{-1.8}$ nb

$\frac{d\sigma(y = 0)}{dy} = 2.7^{+0.6}_{-0.2}$ nb

Ψ': $\sigma(pp \rightarrow pp\psi') = 3.2^{+0.8}_{-0.3}$ nb

$\frac{d\sigma(y = 0)}{dy} = 0.46^{+0.11}_{-0.04}$ nb

Eagerly awaiting the final results from CDF on the measured cross sections …
Ultra-peripheral Collisions in ALICE

ALICE (= A Large Ion Collider Experiment) –
The dedicated Heavy-Ion Experiment at the LHC
Located at IP 2 (former L3) and uses the L3 Magnet

See talk by Rainer Schicker on Thursday
Ultra-peripheral Collisions in ALICE

Ideas to study exclusive vector meson production, in particular J/Ψ and Υ.

Mid-rapidity $V \rightarrow e^+e^-$.
Trigger: Level 0 multiplicity from SiPixel, ToF in anti-coincidence w/ t0 and v0 detectors ($\approx 2 < |\eta| < 5$).
Electron Id: Transition Radiation Detector (also in Level 1 Trigger).

Forward region ($2.2 \leq \eta \leq 4.0$) $V \rightarrow \mu^+\mu^-$.
Trigger: Muon arm trigger in anti-coincidence w/ central arm detectors (SiPixel, ToF).
Expected rates – Vector Mesons

\(\text{Pb+Pb} \; ; \; <L> = 5 \cdot 10^{26} \text{ cm}^{-2}\text{s}^{-1} \; ; \; \text{ALICE year } 10^6 \text{ s} \)

<table>
<thead>
<tr>
<th>Prod. Rate</th>
<th>Decay</th>
<th>Br.Ratio</th>
<th>Geo Acc.*</th>
<th>Detection Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6\cdot10^9</td>
<td>(\pi\pi)</td>
<td>100%</td>
<td>0.079</td>
<td>2.0\cdot10^8</td>
</tr>
<tr>
<td>1.6\cdot10^7</td>
<td>(e^+e^-)</td>
<td>5.93%</td>
<td>0.101</td>
<td>1\cdot10^5</td>
</tr>
<tr>
<td>\approx 1\cdot10^5</td>
<td>(e^+e^-)</td>
<td>2.38%</td>
<td>0.141</td>
<td>\approx 400</td>
</tr>
</tbody>
</table>

Geo Acc: \(|\eta|<0.9, p_T>0.15 \text{ GeV/c} \)

The numbers have been confirmed from aliroot (the ALICE off-line analysis tool) simulations. The exact value of the acceptance will depend on the final track selection and the exact status of the detector when the data were taken.

A bug in the MC was found and that is the reason for the lower J/\(\Psi \) and \(\Upsilon \) acceptances compared with the ALICE Physics Performance Report (J.Phys.G 32(2006)1295).
Ultra-peripheral Collisions in CMS

Exclusive production of Υ in pp and PbPb

From Jonathan Hollar, Presentation at Workshop on High Energy Photon Collisions at the LHC, CERN, 22-25 April, 2008. Also talking here on Thursday.

26 – 30 May 2008 HERA-LHC Workshop, CERN Joakim Nystrand
Two-photon production of Higgs at the LHC

For a standard model Higgs with $M=120$ GeV, calculations give for two-photon production

$$\sigma(pp\rightarrow pp+H) \approx 0.1 \text{ fb} \quad \text{and} \quad \sigma(PbPb\rightarrow PbPb+H) \approx 10 \text{ pb}$$

With integrated luminosities of (1 year $10^7/10^6$ seconds)

$$10^5 \text{ pb}^{-1} \quad \text{and} \quad 1 \text{ nb}^{-1}$$

this gives

$$\approx 10 \text{ events/year} \quad \text{and} \quad \approx 0.01 \text{ events/year}$$

Conclusions and Outlook

- Studying photon-induced interactions at hadron colliders is an opportunity that should not be missed.
- The feasibility has been proven at RHIC and the Tevatron.
- Much focus on Vector Mesons in this talk, but there is a rich variety of topics that can be studied:
 * direct $\gamma+p$ and $\gamma+A$ interactions, e.g.
 $\gamma+p\rightarrow\text{jet+jet+X}$, $\gamma+p\rightarrow Q+\bar{Q}+X$;
 * two-photon interactions, $\gamma\gamma\rightarrow WW$, $\gamma\gamma\rightarrow e^+e^-$ from strong fields in Pb+Pb collisions.
 * etc. etc.