

A study on AlpGen and Sherpa in Z+jets events

Piergiulio Lenzi Università di Firenze & INFN

HERA-LHC workshop CERN 27-05-2008

- The Matrix Element Parton Shower matching problem
- Two different approaches to the matching:
 - CKKW (Catani, Kuhn, Krauss, Webber), the SHERPA way
 - MLM (M. Mangano), the AlpGen way
- Production of Z+jets events at LHC (14 TeV)
 - Sherpa and its systematics
 - AlpGen and its systematics
 - A comparison between the two

Introduction

- This work is part of my "*MCnet short term studentship*" work at University College London (UCL), supervised by Prof. Jon Butterworth
- the RIVET package has been used for this comparison http://projects.hepforge.org/rivet/trac/wiki/
 - RIVET (*Robust Independent Validation of Experiment and Theory*) is part of the CEDAR (*Combined e-Science Data Analysis Resource*) [1] project
 - It will be used by the JetWeb[2] facility to make comparison between theory and experimental data stored in the HEP-DATA [3] database
 - It can be used also as a standalone tool for MC validation/tuning and comparison with experimental results
 - [1] J.M. Butterworth *et al.* "The CEDAR Project", hep-ph/0412139

[2] http://jetweb.cedar.ac.uk/

[3] http://hepdata.cedar.ac.uk

RIVET

- Interface to many generators is provided by the separate AGILe library <u>http://projects.hepforge.org/agile/</u>
- RIVET is a C++ package, with two main kind of objects
 - *Projections:* these classes calculate event observables. Projections are handled through a smart caching system avoiding the same observable being calculated twice for the same event
 - *Analyses:* rivet analyses distributed in the release are mainly intended to reproduce at the generator level experimental results corrected for detector effects. User analyses can of course also be written to compare/tune different event generators
- The default RIVET plot output format is AIDA-xml, the same used when exporting experimental results from HEP-DATA database
- Version 1.0 has been released on 11-02-2008

- The PS response coincides with the ME in the soft/collinear region $x_i{\sim}1$
- The divergence of the cross section in this region is tamed in the PS using a cutoff and a reweighting factor called Sudakov form factor
- It would be very convenient to use the ME to predict hard parton configuration and the PS to describe the evolution of jets
- BUT beware double counting and holes in the phase space!

SHERPA approach to the matching: CKKW

* 09909999

Cluster

- Jet production and jet evolution regions are well separated using a k_t measure (y=min(Pt₁², Pt₂²)* $\Delta R^2/D^2$) cutoff $y_{cut}=Q_{cut}^2/E_{cm}^2$
- The following recipe is used:
 - Calculate the ME cross sections for all the desired parton multiplicities; y_{cut} is used to cutoff divergences; a fixed α_s^{ME} is used
 - events are produced according to the ME cross sections and a "shower history" is reconstructed through k_t clustering until a 2 \rightarrow 2 process is found
 - In other words this answers to the question: "How could a PS have produced this parton configuration?"
 - A running coupling correction weight is applied
 - Apply a Sudakov form factor correction for each clustering
 - The effect of this correction is to weight the event as if it were produced by a PS
 - Evolve the event with a PS, vetoing emission above the cut

AlpGen approach to the matching: MLM

- The MLM algorithm proceeds exactly as the CKKW up to the reweighting of $\alpha_{\rm s}$
- Events are fully showered using a conventional shower (PYTHIA or HERWIG)
- Partons are clustered into jets (with a cone algorithm in the AlpGen implementation)
- Jets are matched to original partons
 - If not all the jets match to the original partons event is rejected
- This effectively reproduces Sudakov reweighting
- Effectively vetoes PS emission above the merging scale

Z+jets event generation

- SHERPA

- SHERPA-MC-1.0.11 was used
- pp \rightarrow e+ e- + up to 3 jets at 14TeV
- CTEQ6l pdf
- No underlying event
- 66. GeV < mass(e⁺ e⁻) < 116. GeV
- Matching parameter $Q_{cut} = 20 \text{GeV}$
- AlpGen
 - V2.13 was used
 - pp \rightarrow e+ e- + n jets (n = 0, 1, 2, 3) at 14TeV
 - CTEQ6l pdf
 - 66.GeV < mass(e⁺ e⁻) < 116. GeV
 - - Matching parameters:
 - E_t(clus) = 25 GeV
 - R(clus) = 0.7
 - ηmax = 5
 - Pythia and Herwig UE was switched off

- Final state particles with $|\eta| < 5$ were selected
- No pt cut on the final state particles
- Kt jets were reconstructed using the FastJets package by M. Cacciari, G. Salam

- Ptmin = 30 GeV, D = 0.4

$$-\Delta R_{||} > 0.2, \Delta R_{|j} > 0.4, \Delta R_{jj} > 0.7$$

- Many lepton and jet observables have been calculated
- For each generator a collection of observables is shown and the effect of a change in the matching parameters and in the scale choice is described
- A comparison between AlpGen and Sherpa is shown

Sherpa, jet observables

Sherpa, differential jet rates

Distribution of the kt resolution variable making a n jet turn into a n-1 jet event

MCnet

- Little bumps observed around the resolution cut $(log_{10}(20) \sim 1.3)$
- The ME kinematics is altered by the PS, so mismatches around the cut can occur

Sherpa systematics: change of the matching scale

- Three values for Q_{cut} were tried: 20GeV (default), 30GeV, 50GeV
- The effect on the overall cross section is summarized below

Qcut=20GeV	Qcut=30GeV	Qcut=50GeV
1594.1 pb	1411.3 pb	1399.8 pb

- The effect on lepton observables, and the relative difference with respect to the default is shown in the plots below
 - As the Q_{cut} is increased, the ME phase space fraction is reduced
 - Since the ME is responsible for the hardest parton kinematics the increase in the merging scale results in spectra with softer tails

Change of the matching scale (continued)

- Jet observables:

- The mean multiplicity decreases as the merging scale grows
- Diff jet rates are depleted in the ME region, and are enhanced in the PS region
- The smoothest transition seems to be the one for the highest merging scale used

Sherpa systematics: change of scales

- Sherpa was run with the default choice for renormalization (μ_R) and factorization (μ_F) scales, μ_R and μ_F times 0.5 and μ_R and μ_F times 2
- The effect on the overall cross secion is summarized below:

Default scales	Scales*0.5	Scales*2
1594.1 pb	1292.4 pb	1646.5 pb

- The effect is more evident in the first bins where the 0 jet contribution dominates
- The effect changes sign for higher boson pt
- This agrees with previous studies, where it was shown that the LO cross section for 0 jets grows with the scale, while the LO cross section for >0jets decreases as the scale grows [hep-ph/0308195]

AlpGen systematics, change of the merging scale MCnet

- Two values were used for the $E_t(min)$ of the cone algorithm used to steer the matching: 25GeV and 40 GeV
- The overall cross section effect is summarized below

Et(min)=25GeV	Et(min)=40GeV
1534.5 pb	1516.4 pb

- The effect on lepton observables is almost negligible

Change of the merging scale (continued)

- Leading jet Pt show a bump around 40 GeV for the nondefault sample
- Small differences observed in the jet multiplicity
- Differential jet rate plots show some modification at the merging scale

AlpGen systematics, Change of scales

- AlpGen+Pythia was run with the default scale choice, μ_R times 0.5 and μ_R times 2
- The effect on the overall cross section is summarized below:

Default scales	Scale*0.5	Scale*2
1534.5 pb	1449.1 pb	1672.2 pb

- The effect is similar to the one observed in Sherpa
- The low pt region, dominated by the 0jet contribution seems to be less affected than in Sherpa though

Change of scales (continued)

- The effect on the jet multiplicity:
 - The scales*0.5 sample shows the highest jet multiplicity, while the scales*2 samples shows the smallest
 - This agrees with what was observed in the boson p_t spectrum, where the tail due to >0 jet events was enhanced in the scales*0.5 case and depleted in the scales*2 case
- The effect of the jet pt spectrum is not very evident

AlpGen-SHERPA comparisons: lepton observables

- AlpGen has been showered both with Pythia and Herwig
- The inclusive cross sections are

SHERPA	AlpGen+PYTHIA	AlpGen+Herwig
1594.1 pb	1534.5 pb	1523.0 pb

- Sherpa shows the hardest spectrum, Pythia the softest
 - Differences between Pythia and Herwig are due to the different way the two PS alter the ME kinematics
- The Pt spectrum differences translate into the η spectrum, with PYTHIA showing the less central Z and SHERPA the most central one

Lepton observables (continued)

- As for the Z spectrum , the $e^{\scriptscriptstyle -}$ P_t spectrum is harder for Sherpa and softer for Pythia
- The $e^{-}\eta$ are similar (within 8%)

AlpGen-SHERPA comparisons: jet observables

- Sherpa shows a harder leading jet spectrum
- The jet multiplicity is maximum for Sherpa and minimum for AlpGen+Pythia

Conclusions

- AlpGen and SHERPA implement two different approaches to the matching of ME and PS predictions
- A study of the "theoretical uncertainties" has been carried out for both generators, varying the matching parameters and the scales
 - The change on the shape of the distributions is similar for the two generators when changing the scales
 - When changing the matching parameters AlpGen shows minor changes in the shape of the distributions than Sherpa
- When comparing AlpGen with SHERPA, some not negligible differences have been spotted:
 - The boson lepton and jet spectra are harder for SHERPA
 - The Sherpa mean jet multiplicity is higher then the AlpGen one
- It might be interesting to see how differential jet rates look on data, and see how well the MC can reproduce these plots, since these observables are very sensitive to the way in which the phase space is filled

The PS formulae

	21 4	
where	$P_{q \to qg} = \frac{4}{3} \frac{1+z^2}{1-z}$	$\frac{2}{2}$, $\frac{1}{2}$ Divergent in $z = 0$ and $z = 1$
	$P_{g \to gg} = 3 \frac{(1-z)}{z(1-z)}$	$\frac{(1-z))^2}{1-z)},$
	$P_{g \to q\overline{q}} = \frac{n_f}{2} \left(z^2 + \frac{n_f}{2} \right) \left(z^2 + \frac{n_f}{$	$(1-z)^2$) $(n_f = \text{no. of quark flavours})$ Divergencies are tamed with a cutoff.
	00000000	Evolving the shower a big splitting probability wint turn into big probabilities for successive
	000000000000000000000000000000000000000	probability the splitting probability a \rightarrow bc at scale Q has to be multiplied by the probability that the
	00000000000000000000000000000000000000	splitting did not happen before (at > Q). This "non branching probability" is the

"Sudakov form factor"

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z \; \exp\left(-\sum_{b,c} \int_{Q^2}^{Q^2_{\mathrm{max}}} \frac{\mathrm{d}Q'^2}{Q'^2} \int \frac{\alpha_{\mathrm{s}}}{2\pi} P_{a\to bc}(z') \,\mathrm{d}z'\right)$$

The ME-PS matching problem

- Matrix Element calculations:

- ✓ Can be done with up to several partons in the final state, as long as tree level results are asked for
- ✓ Describe well separated jets configurations
- \times Run into troubles in the soft and collinear regions
- \times Can't describe the internal structure of jets
- Parton Shower calculations:
 - ✓ PS is universal, given the basic hard process the PS recipe will produce reasonable parton configurations
 - ✓ The use of Sudakov form factors ensures controlled behavior in the soft and collinear region, so jet evolution is well described
 - × Cannot steer the shower evolution too much, some regions of the phase space are not efficiently fillied, e.g. welll separated parton configurations
- A combined use of the two approaches is desiderable, BUT beware double counting and holes in the phase space

PYTHIA approach to the matching: ME corrections

- Let's consider the LO $e+e-\rightarrow qqbar$ and the NLO real emission one $e+e-\rightarrow qqbar$ g

$$W^{\rm ME} = \frac{1}{\sigma({\rm LO})} \frac{{\rm d}\sigma({\rm LO}+g)}{{\rm d}({\rm phasespace})}$$

- If the shower populates the phase space according to W_{PS} , then a factor $W_{\text{ME}}/W_{\text{PS}}$ needs to be applied
- W_{ME} is substituted to W_{PS} in the Sudakov form factor

$$W_{\text{actual}}^{\text{PS}}(Q^2) = W^{\text{ME}}(Q^2) \exp\left(-\int_{Q^2}^{Q_{\text{max}}^2} W^{\text{ME}}(Q'^2) \,\mathrm{d}{Q'}^2\right)$$

- In the hard region, where the Sudavov ~1, the ME results holds, in the soft region, where $W_{\rm ME}$ ~W_{\rm PS} the PS result holds

CKKW (continued)

- For each internal line in the "shower history" connecting scale i to scale k reweight events with a factor $\Delta_i(q_j, q_{\rm MS})/\Delta_i(q_k, q_{\rm MS})$
- For each external line reweight events with a factor $\Delta_i(q_j, q_{\rm MS})$
 - Δ_k(q_i, q_j) is the Sudakov form factor associated to clustering k, connecting scales q_i and q_j

- The net effect of this procedure is similar to what is achieved with the Pythia's ME corrections: <u>the splitting functions present in the</u> <u>Sudakov form factor are replaced by their ME version</u>
- The PS is then applied to the weighted events, with a VETO on hard (avove the merging scale) emission

AlpGen+Pythia, _____default settings

0.6

0.3 0.2

0.1

0.4

0.2

।/ত dʊ/dlog₁₀(Q___/GeV)

0 8

0.6

0.4

0.2

0.6 0.4 0.2

0.5

1.5

/GeV) 0.7

dơ/dlog₁₀(Q 0.5

Jet observables (continued)-- The differential jet rates show man

- differences: Differential Jet Rate 1->0 jets - AlpGen+Pythia and AlpGen+Herwig show similar rates for $2 \rightarrow 1$ and $3 \rightarrow 2$ transition, while the shape is quite 0.870 different for $1 \rightarrow 0$ - Sherpa always fills the ME region more log_(Q__/GeV) Differential Jet Rate 2->1 jets
 - 0.5548
- This seems to be in agreement with the harder spectra observed for

log 3.5 /GeV)

3.5

