Scattering of Heavy Exotic Hadrons

David Milstead

Exotic heavy particles

- Many theories of BSM physics accommodate stable massive particles (SMP).
- Eg, within SUSY
 - Gluino (octet) (Split-SUSY)
 - Stau (colourless) GMSB
 - Stop (triplet) GMSB/5-D SUSY
- If nature grants us a SMP at the LHC/HERA challenge is to detect and extract quantum numbers.
- Heavy coloured particles hadronise to form Rhadrons/H-hadrons
- Hadronic scattering useful discriminating observable

Non-SUSY scenarios

$Q_{\rm em}$	$C_{\rm QCD}$	S	Model(s)
0	8	1	Universal Extra Dimensions (KK gluon)
± 1	1	$\frac{1}{2}$	Universal Extra Dimensions (KK lepton)
			Fat Higgs with a fat top (ψ fermions)
			4th generation (chiral) fermions
			Mirror and/or vector-like fermions
		0	Fat Higgs with a fat top (ψ scalars)
$\pm \frac{4}{3}$	3	$\frac{1}{2}$	Warped Extra Dimensions with GUT parity (XY gaugino)
		0	5D Dynamical SUSY-breaking (xyon)
$-\frac{1}{3},\frac{2}{3}$	3	$\frac{1}{2}$	Universal Extra Dimensions (KK down, KK up)
			4th generation (chiral) fermions
			Mirror and/or vector-like fermions
			Warped Extra Dimensions with GUT parity (XY gaugino)
$\epsilon < 1$	1	$\frac{1}{2}$	GUT with $U(1) - U(1)'$ mixing
			Extra singlets with hypercharge $Y = 2\epsilon$
			Millicharged neutrinos
?	?	$0/\frac{1}{2}/1$	"Technibaryons"

Table 2

Examples of possible SMP states in a variety of models beyond the MSSM (for MSSM SMPs, see Tab. 1). Classified by electric charge Q, colour representation CQCD, spin S, and scenario.

Phys.Rept. 438:1-63,2007 Fairbairn,Kraan,Milstead,Sjöstrand, Skands, Sloan

The observation or non-observation of SMPs are an important part of BSM physics program at the LHC/HERA.

Searching for R-hadrons in a generic detector!

(1) Late arriving muon(2) 'flipped' charge

(1) E/p similar to muon(2) 'steps' of hadronicenergy deposition

Different topologies for heavy hadrons

Understanding scattering processes in material is crucial.

What do we know about R-hadron scattering ?

Heavy exotic meson from massive exotic colour triplet Q and SM quark \overline{q} . $M_Q \approx M_H = 200 \text{ GeV } E = 1 \text{ TeV}$ $\Rightarrow \gamma = E/M = 4$ $M_q \approx 0.2 \text{ GeV} \Rightarrow \text{KE}_q = (\gamma - 1)M_q \approx \text{GeV}$ Heavy quark doesn't interact : $\sigma \approx \frac{k}{M_Q^2}$

Low energy collision between SM quark in material.

Recent ref: hep-ex/0404001 (A.C. Kraan)

What's on the market ?

Generic model: all 2-2 and 2-3 processes allowed. Constant cross section Separated by phase space. Same Clebsch-Gordon co-efficients. hep-ex/0404001 (A.C. Kraan) hep-ph/0612161 (Mackeprang,Rizzi) Geant3 and Geant 4.

Triple Regge estimates for Gluinos hep-ph/9806361 (Baer,Chung,Gunion) hep-ph/9912436 (Mafi,Raby)

	114	R	R-
proton settering: 2→3 processes	$\begin{array}{c} R^+p \rightarrow R^+p \\ R^+p \rightarrow S^{++}a^0 \\ R^+p \rightarrow S^+a^+ \end{array}$	$\begin{array}{c} R^{0} p \rightarrow R^{+} p \\ R^{0} p \rightarrow R^{+} n \\ R^{0} p \rightarrow S^{+} n^{0} \\ R^{0} p \rightarrow S^{+} n^{0} \\ R^{0} p \rightarrow S^{0} n^{+} \end{array}$	$\begin{array}{l} R^-p \rightarrow R^-p \\ R^-p \rightarrow R^0n \\ R^-p \rightarrow S^+n^- \\ R^-p \rightarrow S^0r^0 \end{array}$
oeutres scattering: 2→2 processes	$\begin{array}{c} R^+n \rightarrow R^+n \\ R^+n \rightarrow R^0 + p \\ R^+n \rightarrow S^{++} s^- \\ R^+n \rightarrow S^+ r^0 \\ R^+n \rightarrow S^0 r^+ \end{array}$	$ \begin{array}{l} B^{0}n \rightarrow B^{0}n \\ B^{0}n \rightarrow B^{-}p \\ B^{0}n \rightarrow S^{+}n^{-} \\ B^{0}n \rightarrow S^{0}n^{0} \\ B^{0}n \rightarrow S^{-}n^{+} \end{array} $	$\begin{array}{c} R^-n \rightarrow R^-n \\ R^-n \rightarrow R^0 \pi^- \\ R^-n \rightarrow S^0 \pi^- \\ R^0n \rightarrow S^- \pi^0 \end{array}$
proton senttering: 2→3 processes	$\begin{array}{c} B^+ y \to R^+ y \pi^0 \\ B^0 p \to R^+ n \pi^+ \\ B^+ p \to R^0 p \pi^+ \\ R^+ p \to S^+ + q^0 n^0 \\ R^+ p \to S^+ + q^0 n^0 \\ R^+ p \to S^+ \pi^+ n^0 \\ R^+ p \to S^0 n^+ n^+ \end{array}$	$\begin{array}{c} H^{0}p \rightarrow H^{0}p\pi^{0} \\ H^{0}p \rightarrow H^{0}q\pi^{0} \\ H^{0}p \rightarrow H^{0}q\pi^{0} \\ H^{0}p \rightarrow H^{+}p\pi^{-} \\ H^{0}p \rightarrow H^{+}n\pi^{0} \\ H^{0}p \rightarrow H^{+}n\pi^{0} \\ H^{0}p \rightarrow H^{+}\pi^{0}\pi^{-} \\ H^{0}p \rightarrow H^{+}\pi^{0}\pi^{-} \\ H^{0}p \rightarrow H^{+}\pi^{-} \\ H^{0}p \rightarrow H^{-}\pi^{+}\pi^{-} \\ H^{0}p \rightarrow H^{-}\pi^{+}\pi^{-} \end{array}$	$\begin{array}{c} R^{-}p \rightarrow R^{-}pm^{0} \\ R^{-}p \rightarrow R^{-}nm^{0} \\ R^{-}p \rightarrow R^{0}nm^{0} \\ R^{-}p \rightarrow R^{0}nm^{0} \\ R^{-}p \rightarrow R^{0}nm^{0} \\ R^{-}p \rightarrow S^{0}nm^{0}n^{-} \\ R^{-}p \rightarrow S^{0}nm^{0}n^{-} \\ R^{-}p \rightarrow S^{0}n^{0}n^{0} \\ R^{-}p \rightarrow S^{0}n^{+}n^{-} \\ R^{-}p \rightarrow S^{0}n^{+}n^{-} \end{array}$
outra saturi g: 2→3 processor	$\begin{array}{l} R^+n\to R^+nn^{\prime\prime}\\ R^+n\to R^+pn^-\\ R^+n\to R^0pr^0\\ R^+n\to R^0pr^0\\ R^+n\to R^-pn^+\\ R^+n\to S^+n^0n^-\\ R^+n\to S^+n^0n^-\\ R^+n\to S^+n^+n^-\\ R^+n\to S^0n^+n^0\\ R^+n^0\\ R^+n^0$	$\begin{array}{c} H^{\prime}n \rightarrow H^{\prime}n\pi^{\prime\prime} \\ H^{\prime}n \rightarrow S^{\prime}+\pi^{\prime}\pi^{\prime} \\ H^{\prime}n \rightarrow S^{\prime}+\pi^{\prime}\pi^{\prime} \\ H^{\prime}n \rightarrow S^{\prime}\pi^{\prime}\pi^{\prime} $	$\begin{array}{c} R^-n \rightarrow R^-nn^0\\ R^-n \rightarrow R^-pn^-\\ R^-n \rightarrow S^+n^-r^-\\ R^-n \rightarrow S^+n^-r^-\\ R^-n \rightarrow S^+r^-n^0\\ R^-n \rightarrow S^-r^0n^0\\ R^-n \rightarrow S^-r^+r^-\end{array}$

Triple Regge Approach for stable colour triplets Talk by O. Piskounova (last HERA-LHC meeting)

Triple regge ansatz to estimate energy loss of H-hadron. Separate into pomeron and reggeonic contributions.

$$\frac{d^{2}\sigma_{RRR}}{dtdM_{X}^{2}}(\gamma, M_{X}^{2}) = \frac{1}{M_{X}^{2}}\sigma_{R}^{2}(\gamma)C_{RRR}\exp[(2B_{RH} + B_{RRR} + 2\alpha_{R}'\ln(\frac{2\gamma M_{0}^{2}}{M_{X}^{2}}))t]\left(\frac{M_{0}^{2}}{M_{X}^{2}}\right)^{\Delta_{R}} (4)$$

$$\frac{d^{2}\sigma_{RRP}}{dtdM_{X}^{2}}(\gamma, M_{X}^{2}) = \frac{1}{M_{X}^{2}}\sigma_{R}^{2}(\gamma)C_{RRP}\exp[(2B_{RH} + B_{RRP} + 2\alpha_{P}'\ln(\frac{2\gamma M_{0}^{2}}{M_{X}^{2}}))t]\left(\frac{M_{0}^{2}}{M_{X}^{2}}\right)^{2\Delta_{R}-\Delta_{P}} (5)$$

$$\frac{d^{2}\sigma_{PPR}}{dtdM_{X}^{2}}(\gamma, M_{X}^{2}) = \frac{11}{M_{X}^{2}}\sigma_{P}^{2}(\gamma)C_{PPR}\exp[(2B_{PH} + B_{PPR} + 2\alpha_{P}'\ln(\frac{2\gamma M_{0}^{2}}{M_{X}^{2}}))t]\left(\frac{M_{0}^{2}}{M_{X}^{2}}\right)^{2\Delta_{P}-\Delta_{R}} (6)$$

$$\frac{d^{2}\sigma_{PPR}}{dtdM_{X}^{2}}(\gamma, M_{X}^{2}) = \frac{1}{M_{X}^{2}}\sigma_{P}^{2}(\gamma)C_{PPP}\exp[(2B_{PH} + B_{PPP} + 2\alpha_{P}'\ln(\frac{2\gamma M_{0}^{2}}{M_{X}^{2}}))t]\left(\frac{M_{0}^{2}}{M_{X}^{2}}\right)^{\Delta_{P}} (7)$$

Differential hadronic energy loss

Energy loss per collision around a GeV

Exotic hadron model Fourth generation quark model

Hadronise into H-mesons (90%) and baryons (10%)

Energy loss

Topologies Detector with inner tracking and muon tracking chambers enclosed by calorimeter for scattering..

1	One H-hadron produced with non-zero charge which doesn't change
2	Both particles produced with non-zero charge which don't change.
3	Both particles produced with non-zero charge. One changes to neutral.
4	One partice produced with zero and the other with non-zero charge. The zero charge particle converts to a charged state.
5	Both particles are produced with non-zero charge but convert to zero charge particles.
6	At least one particle leaves the detector material with non-zero charge of opposite sign to the charge it was produced with.

Expected rates for various topologies for 10fb⁻¹

	N	o mixing		Maximal mixing		
Topology	Ma	ass (GeV)		Mass (GeV)		
	200	500	1000	200	500	1000
1	4.9×10^5	4.3×10^3	57	4.1×10^5	3.5×10^3	48
2	$3.0 imes 10^4$	$2.6 imes 10^2$	3	$2.2 imes 10^4$	$1.9 imes 10^2$	2
3	$9.6 imes 10^4$	$8.3 imes 10^2$	9	$8.2 imes 10^4$	$6.8 imes 10^2$	8
4	$6.0 imes 10^4$	$5.2 imes 10^2$	6	$4.8 imes 10^4$	$4.0 imes 10^2$	5
5	$6.4 imes 10^4$	$5.3 imes 10^2$	6	$6.3 imes 10^4$	$5.5 imes 10^2$	6
6	0	0	0	$8.1 imes 10^4$	$7.2 imes 10^2$	9

Mixing: neutral H-meson states can oscillate into their anti-particles.

$$H^{+}(\widetilde{u}\overline{d}) + n \to H^{0}(\widetilde{u}\overline{u}) + p$$
$$H^{0}(\widetilde{u}\overline{u}) \to \overline{H}^{0}(\overline{\widetilde{u}}u)$$
$$\overline{H}^{0}(\overline{\widetilde{u}}u) + n \to \overline{H}^{-}(\overline{\widetilde{u}}d) + p$$

Previous searches

Mostly Tevatron and LEP. HERA makes generic searches for highly ionising particles. Could be fruitful to also include hadron channel.

Summary

- Stable massive particles predicted in a variety of scenarios of BSM physics.
- Possibility to observe SMPs and extract their quantum numbers.
- Hadronic interactions can hinder and aid a search strategy.
- New approach for quark-like exotic objects.