I was asked to give a talk
"B-Physics Theory Overview".

I was told by somebody,
who prefers to remain anonymous
-- can you guess? -this obviously means
"Buras-Physics Overview".

Since it is even more impossible to do that in 30 min.,
I decided to specify the title differently ---

CERN, May 2008

B Decay Dynamics -- an Overview

Ikaros Bigi, Notre Dame du Lac

First an appeal to LHC experiments:

Try very, very hard to search for

$$\tau \rightarrow 3\mu$$
, ...

desirable range $\sim 10^{-8}$ - 10^{-10}

Will address measurements that

- a can be made at the LHC
- are relevant for LHC studies, even if cannot be done here

Prologue

→ 3 inter-related aspects of B dynamics indirect probes for New Physics (NP) observed rate # predicted rate ew SM decay dynamics SM parameters --- accurate SM predictions --{quarks, gluons, ...} ← {hadrons,...} hadronization validate theoret. control over QCD △ learn (novel?) lessons on QCD QCD might just be the first of theories realized in nature with essential nonperturb. dynamics

- We cannot count on numerically massive impact of TeV scale NP on B decays -- larger than anticipated operational success of B factories suggest typical impact smallish
 - need reliability & accuracy

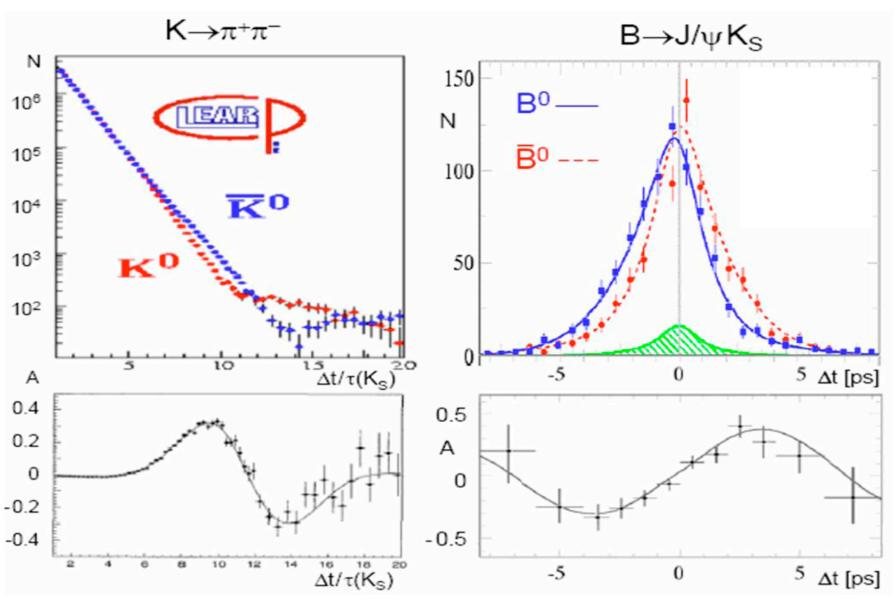
$$\Lambda/m_b \ll 1$$

Heavy Quark Symmetry ≈ Heavy Quark Expans.

~
$$H_{\text{Pauli}} = -A_0 + (i\partial -A)^2/2m_Q + \sigma \cdot B/2m_Q \rightarrow -A_0$$
 as $m_Q \rightarrow \infty$

i.e., infinitely heavy static quark, without spin dynamics, only colour Coulomb potential!

 \Box classification of $m_b \rightarrow \infty$


good!

understand 1/m_b corrections

- better!
- $_{\rm o}$ no 1/m_b correct., understand 1/m_b² correct.

- → Heavy Quark Theory (HQT) mature, robust framework
 - → (quark) model considerations
 - most useful as starting point
 - most helpful to train intuition
 - not satisfactory for final answers
 - should not replace interpretations based on HQT!
- We would have seen `generic' SUSY -- but
 - Mature has shown little taste for `generic' dynam.
 - the one certain aspect of SUSY -- that it is broken -is the least understood one

- The statement "The data have led us to a world of Minimal Flavour Violation (MFV)" might be visionary --
- but it is at least premature!
- Inferring $T_{NP} \leftrightarrow T_{SM}$ from $T_{NP} \leftarrow T_{SM}$ needs some act of faith
 - it is a classification scheme, not a model or theory -- analogous to the Superweak Model of \mathscr{E}^{\not}
 - one must analyze to which degree a given theory implements this scheme dynamically:
 - absolute vs. approximate; how approximate?
- When & if time dependent eP in $B_s \to \psi \phi$ found to be < 10%, then I will be more intrigued

[courtesy of K. Schubert]

⇒ statement 'ep' in B decays is much larger than in K decays'
is an empirically verified fact

The Menu

I Basics of HQT and HQE

II On Beauty Lifetimes

→ Lenz

III On Extracting |V(cb)| and |V(ub)|

→ Uraltsev

IV "3/2 vs. 1/2"

V On the Autonomy of B_s Dynamics

VI On B $\rightarrow \tau \nu D$, $\tau \nu X$

→ Uraltsev

VII Outlook

I Basics of HQT and HQE

One of the most active & most quickly progressing fields of QCD

10

- the goal: to treat nonperturbative dynamics quantitatively
- \odot the hope: $m_b >> \Lambda_{QCD}$
- central tool: Operator Product Expansion (OPE)
- → most common application: inclusive rates

$$\Gamma(H_Q \rightarrow f) = \sum_i c_i^{(f)} (KM, M_W, m_Q, \alpha_S, \mu) \langle H_Q \mid O_i \mid H_Q \rangle_{(\mu)}$$

- short distance dynamics \rightarrow coeff. $c_i^{(f)}$
- universal cast of local operators O_i
- $\langle H_Q | O_i | H_Q \rangle$ inferred from other observables or lattice QCD!

expansion parameter

$$1/E_{\text{release}} \sim \begin{cases} 1/(m_b - m_c) & b \rightarrow c \\ 1/m_b & \text{for} \end{cases}$$

Wilson: auxiliary scale µ s.t.

short distance $\langle \mu^{-1} \langle long distance \rangle$

- $\bullet c_i \Leftrightarrow short distance dynamics$
- Oi active fields long distance dynamics

not all OPEs are created equal

caveat:
$$\mu_{\pi}^2 \neq -\lambda_1$$
, $\mu_{G}^2 \neq -\lambda_2$

will use `kinetic scheme': soft gluon effects lumped into HQP defined at $\mu \sim 1 \text{ GeV}$

- total widths, total SL widths:
 - $_{\rm o}$ no contributions $\sim {\cal O}(1/{\rm m_b})$ due to complete cancellations between initial and final state corrections
 - partial cancellations in $\sim O(1/m_b^2)$
 - somewhat smaller than `natural' scale
 - □ for $\Gamma_{SL}(B \rightarrow lvX_c)$ explicit analysis of $O(1/m_b^4)$ Mannel et al.
 - can & will be improved with results from IC analysis Zwicky et al.

II On Beauty Lifetimes

\rightarrow Lenz

	1/m _b predict.		comment	data
$\tau(B^-)/\tau(B_d)$	1+0.05(f _B /0.2GeV) ² '92		PI in $\tau(B^-)$ fact. at low scale ~ 1 GeV	1.076±0.008 '05 1.071±0.009 '08
	1.06 ±0.02	'98-'03	scale ~ 1 GeV	1.071±0.009 08
$<\tau(B_s)>/\tau(B_d)$	1 ± O(0.01)	'94		0.92±0.03 '05
				0.961±0.018 '08
$\tau(\Lambda_b)/\tau(B_d)$	~0.9 - 1.0	'93	quark model	0.806±0.047 '05
	0.88 - 0.97	'98	WE	0.904±0.032 '08
$\tau(B_c)$	~ 0.5 psec	'94	largest lifetime difference!	0.45±0.12 ps '05
			no 1/m _Q crucial	0.463±0.071 ps '08
$\Delta\Gamma(B_s)/\Gamma(B_s)$	0.18(f _B /0.2 <i>G</i> eV) ² '87		less reliable	0.07±0.06 '08
	0.12±0.04	'04	than $\Delta M(B_s)$	

```
'93/'94: \tau(\Lambda_b)/\tau(B_d) \sim 0.9 - 1.0 ibiBlokShifUraltVainsh
'94ff: \tau(\Lambda_b)/\tau(B_d) \sim 0.806 \pm 0.047
           \tau(\Lambda_b)/\tau(B_d) \sim 0.94^{+0.03} [0.88 - 0.97] Uralt \leftarrow
'98:
     if \tau(\Lambda_b)/\tau(B_d) < 0.88 \longrightarrow new paradigm for had. wavefct.
'04:
          \tau(\Lambda_b)/\tau(B_d) \sim 0.86 \pm 0.05
                                                          GOP
'05:
           \tau(\Lambda_b)/\tau(B_d) \sim 0.87 \pm 0.17 \pm 0.03
                                                          DO
           \tau(\Lambda_b)/\tau(B_d) \sim 0.944 \pm 0.086
                                                       CDF
           \tau(\Lambda_b)/\tau(B_d) \sim 1.037 \pm 0.058 CDF
'06:
• highly desirable to measure \tau(\Xi_b^0) & \tau(\Xi_b^-)
                 to diagnose failure or confirm success
'93/'94: \bar{\tau}(B_s)/\tau(B_d) = 1 \pm O(1 \%) ibiUralt
'08:
             \overline{\tau}(B_s)/\tau(B_d) = 0.961 \pm 0.018
```

 $\Delta\Gamma_{s}$

theoret. predict. based on quark box diagram

$$\Delta\Gamma(\mathsf{B}_s)/\Gamma(\mathsf{B}_s)$$

0.18(f_B/0.2*G*eV)² '87 0.12±0.04 '04

my heart wishes $\Delta\Gamma(B_s)/\Gamma(B_s) \sim 0.5$ yet my head tells me $\Delta\Gamma(B_s)/\Gamma(B_s) > 0.25$ very unlikely

local operator

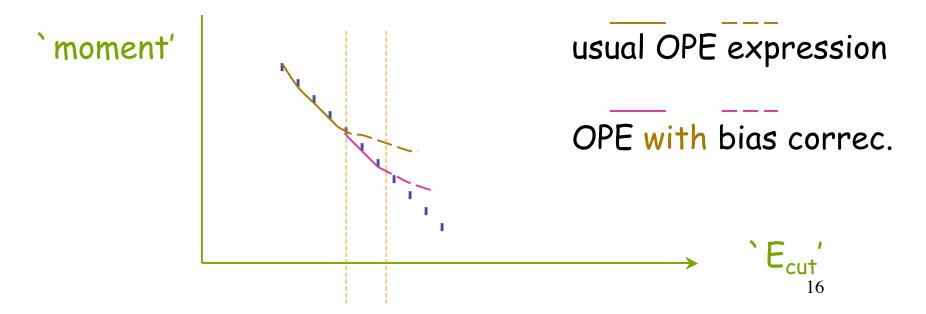
(at best) short-distance operator

- \bowtie quark box diagram less reliable for $\Delta\Gamma(B)$ than for $\Delta M(B)$
- → theoretical uncertainties might be sizable in $\Delta\Gamma(B)/\Delta M(B)$ even with the bag factor dropping out!

III On Extracting |V(cb)| and |V(ub)|

→ Uraltsev

(3.1) |V(cb)|


$$B \rightarrow |vX_c|$$

total width & normalized moments for B $\rightarrow l_V X_c / \gamma X$

- $ightharpoonup |V(cb)|_{incl} = (42.04 \pm 0.34|_{fit} \pm 0.59|_{\Gamma SL}) \times 10^{-3}$ $m_b^{kin} = (4.597 \pm 0.034|_{fit}) GeV$ $m_c = (1.163 \pm 0.051|_{fit}) GeV$ $\mu_{\pi}^2 = (0.434 \pm 0.033|_{fit}) GeV^2$ $\rho_D^3 = (0.213 \pm 0.033|_{fit}) GeV^3$
- theoretical error budget defensible since
 - 4 HQP provide consistent fit to several moments with different cuts
 high degree of overconstraints
 - \square m_b^{kin} from weak $B \rightarrow I_V X_c = m_b^{kin}$ from em&str. $Y(45) \rightarrow bb$
 - fit values satisfy relations without them being imposed

`defensible'? --

$$B \rightarrow I_V D^*$$

Extract
$$|F(1)||V(cb)|_{exc} = (36.2 \pm 0.6) \times 10^{-3}$$

- **◆ LQCD**: |F(1)|= 0.924 ± 0.023
 - \rightarrow $|V(cb)|_{excl} = (39.2 \pm 0.6 \pm 1.0) \times 10^{-3}$

F(1) =
$$0.89 \pm 0.04 + O(1/m_0^3)$$
 Uraltsev '94

- □ F(1) < 0.89 Uraltsev '07
- caveat concerning F(1)
 - □ leading expansion term 1/m_c

to consider when comparing

$$|V(cb)|_{incl} = (42.04 \pm 0.34|_{fit} \pm 0.59|_{\Gamma SL}) \times 10^{-3}$$
 vs.

$$|V(cb)|_{excl} = (39.2 \pm 0.6 \pm 1.0) \times 10^{-3}$$

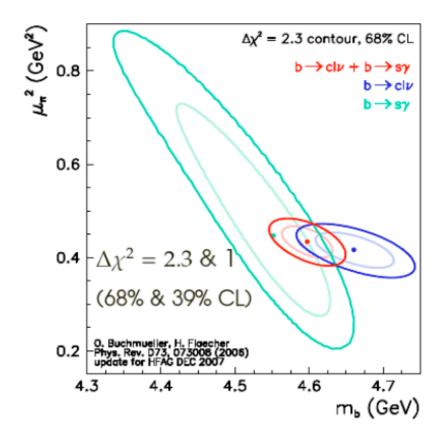
(3.2) |V(ub)|

$$B \rightarrow I_V X_u$$

no need to `re-invent the wheel':

- for $B \rightarrow l_V X_u$ use same values of the HQP as determined in $B \rightarrow l_V X_c$
- yet given enough data can check it anyway
- □ in principle $\Gamma(B \to l_V X_u)$ under better theoretical control than $\Gamma(B \to l_V X_c)$

Lepton energy endpoint spectrum?

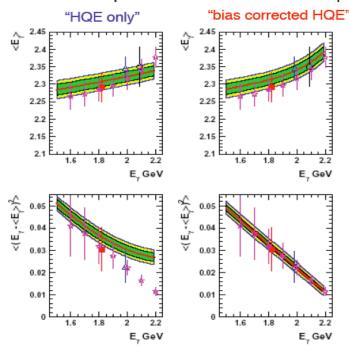

- model dependent!
- $\stackrel{ ext{\tiny (2)}}{ ext{\tiny (2)}}$ can get heavy quark distribution function from $B \longrightarrow \gamma X$
 - \odot but only to leading order in $1/m_b$
- endpoint spectrum different for SL B_u and B_d decays (WA)

Hadronic recoil mass spectrum!

$$B \rightarrow I_V X_u$$

$$M_X < M_D \text{ vs. } E_1 > [\sim] (M_B^2 - M_D^2)/2M_B \text{ vs. } q^2 > (M_B - M_D)^2$$

- cuts destroy straightforward applicability of OPE
- sensitivity to precise value of m_b


Should we `toss out' $B \rightarrow \gamma X$ moments due to severe cuts on E_{γ} ?

No!

- ^ Do not let the excellent be the enemy of the very good!'
- We have demonstrated that the cut dependence is under sufficient control -- the `bias corrections'

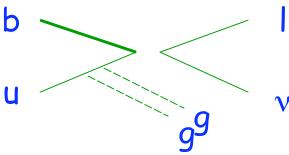
Consistency between $b \rightarrow s \gamma$ and $b \rightarrow c l \nu$

Moment measurements agree well with HQE prediction obtained from the clv moment fit.

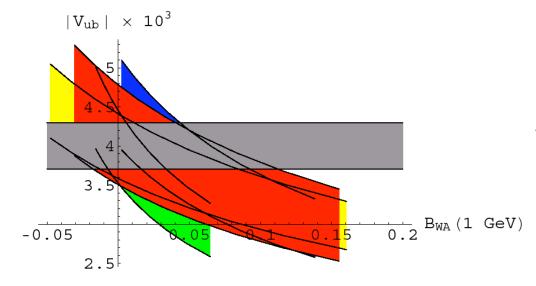
Evidence that bias correction is needed for moments above $E_{\gamma}>1.8$ GeV

But we can do more ...

→Use the shape function parameter that fit the BELLE spectrum to obtain the moments as a function of the cut.


(Test: agrees nicely at Eγ=1.8 GeV with the direct measurement from BELLE)

Remarkable agreement with HQE prediction


Strong evidence, especially from the second moment, that bias corrections are needed above Ey>1.8 GeV.

from O. Buchmueller

Important concern: Weak Annihilation (WA)

- dominant contribution at high q²
- unambiguous signature: difference in B_d & B_u endpoint spectrum
- → yet can have also sizable isoscalar contribution
 - need careful modeling

Preliminary Babar analysis of the q² spectrum seems to suggest a Small WA contribution and V_{ub}~0.0040

P. Gambino, Valencia Super-B

From P. Gambino's FPCP talk

Kinetic scheme -- Gambino, Giordano, Ossola, Uraltsev --
$$|V(ub)|_{incl} = (3.94 \pm 0.15|_{exp}^{+0.20}_{-0.23}|_{th}) \times 10^{-3}$$
 -- BLNP -- $|V(ub)|_{incl} = (3.99 \pm 0.14|_{exp}^{+0.32}_{-0.27}|_{th}) \times 10^{-3}$ [if same input values used in BLNP, $|V(ub)|_{incl} \sim 4.1 \times 10^{-3}$]

VS.

$$|V(ub)|_{excl} = (3.5 \pm 0.4 \pm 0.1) \times 10^{-3}$$

$$|V(ub)|_{excl} = (3.5 \pm 0.4|_{th} \pm 0.2|_{sh} \pm 0.1|_{exp}) \times 10^{-3}$$

- → no clear discrepancy between |V(ub)|_{incl} & |V(ub)|_{excl}
- some tension with $|V(ub)|_{CKMfit} = (3.57 \pm 0.17) \times 10^{-3}$

My conclusions

- Theory error estimates for $|V(ub)|_{incl}$ have not reached same level of maturity as for $|V(cb)|_{incl}$
- ~ 5 % within reach in next few years
- need better understanding of WA
- need higher accuracy on m_b
- we are encountering a Calvinist scenario: many paths to heaven -- only success reveals Heaven's blessing
- ~ 2 % conceivable with data set from Super-B factory!

IV "3/2 vs. 1/2"

Heavy Quark Symmetry ≈ Heavy Quark Expans.

~
$$H_{Pauli}$$
 = - A_0 +(i ∂ -A)²/2 m_Q + σ ·B/2 m_Q \rightarrow - A_0 as m_Q \rightarrow ∞

i.e., infinitely heavy static quark, without spin dynamics, only colour Coulomb potential!

- hadrons H_Q labeled by total spin S and by $j_q = l_q + s_q$:
 - ground states: $[S|I_q|j_q] = [0,1|0|1/2]$: PS -- B or D -- & V -- B* or D*
 - 1st excit. states: [0,1|1|1/2] & [1,2 |1|3/2]
 - 4 P wave states: 2 $j_a=3/2$ narrow states
 - $2 j_q = 1/2$ broad states

2/3 - 3/4 of $B \rightarrow I_V X_c$ given by D/D^*

- charm can act as a heavy flavour
- \angle what is the rest of X_c made up from?
 - → P wave states

HQ SR: narrow `3/2' have to dominate over broad `1/2' QM, LQCD: same prediction to different numerical degrees Data: somewhat ambiguous findings

- agree with expectations on narrow states
- ~ 15 20 % of final states of different nature
- □ non-resonant D/D*π's forming ~15% a priori not surpris.
- no obvious non-resonant contribution in data
- if observed broad structures `1/2', then `3/2' > 1/2'!

?? Novel lesson on QCD ??
Can LHCb contribute?

V On the Autonomy of B_s Dynamics

original paradigm: need B_d & B_s to determine all 3 angles $\phi_2/\alpha, \phi_1/\beta$ from B_d vs. ϕ_3/γ from B_s

new paradigm: can get all angles from B_d

Furthermore NP in general will not obey SM relations between B and B_s decays

 \Rightarrow B_s decays a priori independent chapter in nature's book on fundamental dynamics

 $B_s(t) \rightarrow \psi \phi$, $\psi \eta$, $\phi \phi$ not a repetition of lessons from $B_d \& B_u$ decays!

VI On B $\rightarrow \tau \nu D$, $\tau \nu X$

```
B \rightarrow \tau \nu D could be affected by H^{\pm}-X
```

- → hadronization effects do not drop out from $\Gamma(B \to \tau \nu D)/\Gamma(B \to \mu \nu D)$ at finite quark masses [1 FF for B $\to \mu \nu D$, 2 FFs for B $\to \tau \nu D$]
- Uraltsev's BPS approximation can help:
 - □ validate it in $B \rightarrow \mu\nu D$
 - apply it to $B \rightarrow \tau \nu D$
- $B \rightarrow \tau v X_c$ could be affected by H±-X its SM size been evaluated in '94 (Neubert et al.)
- now we can do it much better: ingredients there to predict $\Gamma(B \to \tau \nu X)|_{SM}$ to within very few %
- even if no NP found there, novel lessons on onset of duality!

VII Outlook

We have come a long way in the last 15 years

- → in B decay dynamics have established theoretical control over non-pert. dynamics on the very few % level with
 - detailed theoretical error budgets
 - that can be defended
- Basis for this progress two-fold
 - robust theoretical framework
 - challenged & complemented by detailed high quality data
- emerging synergies between diff. theoret. technologies
- •• further progress likely[possible]: $\delta V_{cb} \sim 1\%$, $\delta V_{ub} \sim 5\%$ [2%]
- ◆ LHCb will be highly successful --
- B_s = indep. chapter in nature's book on fundamental dynamics
- -- but not complete the agenda of heavy flavour dynamics

A final thought:

Models with extra dimensions have several ad-hoc features

...

yet are sufficiently radical/crazy to push our thinking out of the comfort zone of a possible dead end into new fruitful directions --

i.e. are a most helpful `imagination stretcher'!