

Measurement of the longitudinal structure function F_L at HERA with the ZEUS detector

Julia Grebenyuk

on behalf of ZEUS Collaboration

Outlook

- Deep-inelastic scattering
 - Cross sections and structure functions
 - Longitudinal structure function F_L
- HERA accelerator and ZEUS detector
- F₁ at ZEUS
 - Signal extraction
 - Background rejection
- Measured cross sections
- Extracted F_L
 - Comparison with predictions
- Summary

HERA collider at DESY

- HERA is a lepton-proton collider with 2 general purpose collider experiments: H1, ZEUS
- Operation period: 1992 June 2007 \rightarrow total delivered luminosity 780 pb⁻¹
- Most of luminosity was taken with proton beam energy of 920 GeV
- In the last year of running HERA smoothly transited to operation with lowered proton beam energy: first 460 GeV and then 575 GeV

- ZEUS collected good data with all 4 proton beam energies:
 - 820 GeV → 48 pb $^{-1}$
 - 920 GeV → 456 pb⁻¹
 - 460 GeV → 14 pb $^{-1}$
 - 575 GeV → 7 pb $^{-1}$

Deep-inelastic scattering

- Deep-inelastic scattering is a key tool to probe the structure of the proton
- Kinematic variables:
 - Q^2 virtuality of the photon:

$$Q^2 = -q^2 = -(k - k')^2$$

- s - center of mass energy:

$$s = (p+k)^2$$

- x - Bjorken scaling variable:

$$x = \frac{Q^2}{2P \cdot q}$$

- y - inelasticity:

$$y = \frac{q \cdot P}{k \cdot P}$$

DIS cross section and structure functions. F_L.

DIS cross section:

- product of the leptonic and hadronic tensors
- can be split up into longitudinal and transversal parts

$$\frac{d^2 \sigma^{\pm}}{d x d Q^2}(x, Q^2) = \frac{2\pi \alpha^2}{x Q^4} Y_+ [F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)]$$

Callan-Gross relation:

- Parton model: $2xF_1=F_2$, i.e. $F_L=0$
- QCD: $F_1 = 2xF_1 F_2$
- F_L:
 - directly sensitive to gluon dynamics → good test of perturbative QCD
 - visible only at high y
 - supressed by y^2 factor \rightarrow difficult to measure

F_L extraction strategy

- Reduced cross section can be measured: $\tilde{\sigma} = F_2(x,Q^2) \frac{y^2}{Y_+} F_L(x,Q^2)$
- To separate F₂ and F₁:
 - need to measure cross sections at the same x and Q² but different y
 - different $y \rightarrow different s \rightarrow different beam energies$

$$F_L(x,Q^2) = \frac{\tilde{\sigma}_1(x,Q^2,y_1) - \tilde{\sigma}_2(x,Q^2,y_2)}{y_2^2/Y_{2+} - y_1^2/Y_{1+}}$$

Larger y difference + more points → higher F_L measurement accuracy

F₁ measurement features

• Scattered electron is used to reconstruct kinematic variables:

$$y_{el} = 1 - \frac{E_e}{2E_e^{\text{beam}}} (1 - \cos \theta_e)$$
 $Q_{el}^2 = 2E_e^{\text{beam}} E_e (1 + \cos \theta_e)$

- Measurement is performed at low $Q^2 \rightarrow s$ cattered electron is close to the beam pipe
- Both, high and low y regions have to be accessed:
 - $Low y \rightarrow high energy scattered electron$
 - $High y \rightarrow low energy scattered electron$

Cross sections at high y with ZEUS

To show the feasibility of the measurement at high-y region at ZEUS the cross sections were extracted with extended (compare to previous measurement) kinematic region:

- -0.1 < y < 0.8
- $-25 \text{ GeV}^2 < Q^2 < 1300 \text{ GeV}^2$
- Measurement was successfully performed and shown at DIS07

ZEUS

Photoproduction background

- Main background for the measurement are photoproduction events:
 - Electron radiates almost real photon which interacts with proton
 - True electron goes down to the beam pipe
 - One of the particles (γ or π) is misidentified as electron

- Reject hadrons with shower shapes requirements
- Reject photons with *track* requirement
- Use photoproduction Monte Caro to account for remaining background
- → tracking and good simulation are very important

Backward tracking

- Most of background are photons close to the beam pipe
- ZEUS tracking system acceptance is *limited* in the backward direction to $\theta e < 154^{\circ}$
 - \rightarrow new tool has been developed to extend acceptance down to $\theta e < 168^{\circ}$
- How does it work:
 - Road from vertex to the electron candidate is created
 - Hit finding in the area around the road is performed
- Backward tracking tool has:
 - Good efficiency for DIS events
 - Good background rejection power
- Upcoming: charge extraction

Understanding of photoproduction: 6 meter tagger

- After rejecting photoproduction events with tracking tools and shower shapes requirements some events still remain
 - use Monte Carlo to account for that

- At ZEUS photoproduction events can be tagged directly with a small tagger(~5.5 m from interaction point):
 - for electrons with energies from 4 GeV to 9 GeV acceptance is 100%

Pythia minimum bias PHP MC describes well energy distributions of fake electrons in

the main detector

 For each beam energy normalization factor is extracted

Analysis samples and selection. Systematic checks

- Present measurement has been done with two data sets:
 - Ep=920 GeV \to 32.8 pb⁻¹
 - Ep=460 GeV \rightarrow 14 pb⁻¹
- Identical selection was applied on both samples:
 - Scattered electrons energy above 6 GeV
 - 42 GeV < E-pz < 65 GeV
 - |Zvtx| < 30 cm
- **Systematic checks:** energy scale, electron finding, position reconstruction, vertex uncertainty, hit finding, photoproduction normalization, uncorrelated luminosity, E-pz, relative normalization
- Systematics were estimated conservatively → room for improvements

Control distributions

MC samples were generated with $F_L=0$ to avoid possible bias from predictions

Reduced cross sections vs. x

Q² range: 24 GeV-110 GeV

- Turnover at low x is not obvious
- → Measurement at higher y is needed

 F_L is extracted from difference in cross sections at same x and Q²

ZEUS

ZEUS F_L

Extracted values of F_L are consistent with ZEUS-JETS predictions and with 0 as well (due to large uncertainties)

- → Room for improvements:
 - Lower energies of scattered electron
 - Reduction of systematics
 - Third beam energy data set
- Analysis in progress

ZEUS

Summary

- ZEUS has performed a direct measurement of the longitudinal structure function
 - Two data sets were used, with Ep=920 GeV and Ep=460 GeV
 - Q² range: 24 GeV-110 GeV
 - Measured values of F_{L} are consistent with ZEUS-JETS predictions as well as with $F_{L} = 0$
- Improvements to come:
 - Inclusion of third data set (Ep=575 GeV)
 - Extension of measurement to higher y and lower Q² region
 - Reduction of systematic uncertainties