

4th HERA and the LHC Workshop

Expectations for QCD with first LHC Data

On behalf of the ATLAS and CMS Collaborations Klaus Rabbertz University of Karlsruhe

Klaus Rabbertz

- LHC Racing Rules
- Practice
 - Tracks
- Qualifying
 - Jets
- Warming-up
 - Photons
- Pit stop
 - PDFs
- The Race
 - New physics

Final Score Klaus Rabbertz

CERN, 26.05.2008

C

The Audience arrives ...

CERN OpenDays 5./6. April 2008: 76000 Visitors

, U C

3

The Circuit: LHC

Training: End of June Qualifying: August?

Fuel regulations:
★ Engineering: Low grade 85 fuel:
E_{cms} = 900 GeV, some days
★ Start-up: 2008 with 90 octane only:
E_{cms} = 10 TeV, L_{int} ~ 40/pb
★ Race: From 2009 with high grade 95 octane:
E_{cms} = 14 TeV

Bunch patterns: 43x43, 156x156

 $\frac{\text{Specific luminosity:}}{3^*10^{30} - 6^*10^{31} \text{ cm}^{-2} \text{ s}^{-1}}$

LHC - E

CMS Point S

For the current machine status see talk by M. Lamont

Most results presented in the following are for 14 TeV! Only exception next slide ...

Klaus Rabbertz

CERN, 26.05.2008

CERN

ALICE

ALIC

Point 2

4

Ratio 10 TeV / 14 TeV

Inclusive kT cross section in 6 bins in rapidity y, D = 0.6

Tracks: The Drivers

Good candidates for

measurements at 900 GeV

- Track based analyses:
 - Charged hadron spectra

Underlying event from transverse region of charged particle jets

Charged Hadron Spectra

One of the first analyses possible ...

Charged Hadron Spectra

See also talks by R. Field and in multi-jets Tuesday morning session!

 A measurement possibility:
 → Charged particle and Ptsum densities in transverse region of leading charged jet

Klaus Rabbertz

CERN, 26.05.2008

9

The Underlying Event

Charged particle density in transverse plane vs. leading charged jet pT

Jets: The Drivers

- Jet algorithms
- Jet energy calibration
- Jet analyses (calorimeter):
 - **Dijet azimuthal decorrelation**
 - **Jet shapes**
 - Inclusive jet cross sections

Avoid pit stops for changing to a safe jet algorithm later ...

Algorithms in use by ATLAS and CMS

ATLAS: → Iterative Cone R = 0.4, 0.7 → SISCone in future?? → kT D = 0.4, 0.6

CMS:

Iterative Cone R = 0.5
 SISCone R = 0.5, 0.7
 kT D = 0.4, 0.6

For many more details, see talk by G. Salam and in multi-jets Tuesday afternoon sessions!

Klaus Rabbertz

Jet energy resolution from CMS performance study

SISCone performs equally well as MidPoint Cone

12

Jet Energy Calibration

Description simplified, jet energy corrections are a very complex matter!

Factorized multi-level Calibration: CMS

- offset correction for pile-up, noise, thresholds
- relative correction for response variations in η (di-jets)
- → absolute correction to particle level (pT balance in γ/Z + jet, M_W, M_{top} in ttbar → WbWb

Local Hadron Calibration: ATLAS

- calibrate clusters independent of any jet algorithm to individual particle scale
- make jets out of calibrated clusters

Projection of uncertainties on TeV jets (Jets with pT = 1 TeV, $|\eta| < 2$)

Klaus Rabbertz

Dijets in pp collisions:

 $\Delta \phi$ dijet = $\pi \rightarrow$ Exactly two jets, no further radiation

 $\Delta \phi$ dijet small deviations from $\pi \rightarrow$ Additional soft radiation outside the jets

 $\Delta \phi$ dijet as small as $2\pi/3 \rightarrow$ One additional high-pT jet

 $\Delta \phi$ dijet small – no limit \rightarrow Multiple additional hard jets in the event

hep-ex/0409040 PRL 94, 221801 (2005)

Klaus Rabbertz

Dijet Azimuthal Decorrelation Q D ATLAS comparison between Cone jet algorithm: + R=0.7

→ N_{jets}

= 2

generated and reconstructed $\Delta \phi$ in two bins of ET

C

A possibility to look into details of QCD and jet structure!

Norm. transverse energy distribution:

$$\rho(r) = \frac{\sum p_{\rm T}(r - \Delta r/2, r + \Delta r/2)}{\Delta r \sum p_{\rm T}^{Jet}}$$

Good reproduction of general properties (central region |η| < 1, matched jets)</th>Jets from generator particlesJets from calorimeter towers

CDF Incl. kT jets, D=0.7 Theory: NLO with CTEQ6.1M

D0 Incl. Midpoint cone jets, R=0.7 Theory: NLO with CTEQ6.5M

arXiv:0802.2400 [hep-ex]

Gamma + jet + X (arXiv:0804.1107 [hep-ex])

Color code:

Blue: Good description by NLO Red: Not described by NLO (photons ...)

Klaus Rabbertz

CERN, 26.05.2008

4th HERA and the LHC Workshop

Inclusive Jets at the LHC

Inclusive Jets at the LHC

Expected PDF uncertainties according to standard procedure with error sets from CTEQ 6.5

Pit Stop: PDF uncertainties

CERN, 26.05.2008

4th HERA and the LHC Workshop 21

Photon Rates

к с С

=	# bunches	β^* (m)	I_b	$L (cm^{-2} s^{-1})$	Pileup	Photons/	hour Pho	ton rate
_						$(p_T > 20)$	GeV) estir	nations:
	1x1	18	10^{10}	10^{27}	low	$3.2 \cdot 10^{-3}$	$)^{-1}$	
	43x43	18	$3\cdot 10^{10}$	$3.8 \cdot 10^{29}$	0.05	$1.2 \cdot 1$	0^2 • Pho	oton pT > 20GeV
	43x43	4	$3\cdot 10^{10}$	$1.7 \cdot 10^{30}$	0.21	$5.4 \cdot 1$	0^2	
	43x43	2	$4\cdot 10^{10}$	$6.1 \cdot 10^{30}$	0.76	$2.0 \cdot 1$	0^{3}	
	156x156	4	$4\cdot 10^{10}$	$1.1 \cdot 10^{31}$	0.38	$3.6 \cdot 1$	0^{3}	
	156x156	4	$9\cdot 10^{10}$	$5.1 \cdot 10^{31}$	1.9	$1.6 \cdot 1$	0^{4}	
CMS	6 156x156	2	$9\cdot 10^{10}$	$1.1 \cdot 10^{32}$	3.9	$3.6 \cdot 1$	0^{5}	
=			Not ta	ken into account -			.let energy	Trigger
ATLAS trigger simulation results for $L = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$:							range (GeV)	Efficiency%)
 Trigger on photon pT > 20 GeV in eta < 2.4 Signal sample: γ+jet (γ generated with pT >10 GeV) 							17-35	75.1 ±0.3
							35-70	83.5 ±0.3
							70-140	89.3 ±0.2
Background from jet-jet sample generated with pT > 15						4	140-280	91.7 ±0.2
					5	280-560	94.4 ±0.2	
					ATLAS	6	560-1120	92.4 ±1.1
	Klaus R	abbertz		CERN, 26.05.20	208	4th HERA	and the LHC	Workshop 22

Photon Conversion & Isolation

Important steps:

- Good efficiency including photon conversions
- Proper photon isolation to suppress background

ATLAS photon efficiency:

- > 80% at low luminosity
- including converted & unconverted photons

New Physics: The Drivers

- New Physics with Jets:
 - Contact interactions

Di-jet mass distribution

Resonances

- ★ W' & Z' (Grand Unified Theory)
 - E₆ diquarks (D) (Superstrings & GUT)
- Need E_{CMS} > M ★

CMS

q, **q**, **g**

Dijet Resonance

Х

			Cross Section (pb)					
			M=0.7 TeV		M=2.0 TeV		M=5.0 TeV	
Model	J	Color	$ \eta < 1$	$ \eta < 1.3$	$ \eta < 1$	$ \eta < 1.3$	$ \eta < 1$	$ \eta < 1.3$
q*	1/2	Triplet	7.95×10^{2}	1.27×10^{3}	9.01	1.36×10^{1}	1.82×10^{-2}	2.30×10^{-2}
A,C	1	Octet	3.22×10^{2}	5.21×10^{2}	5.79	8.82	1.55×10^{-2}	2.04×10^{-2}
D	0	Triplet	8.11×10^{1}	1.26×10^{2}	4.20	5.97	4.65×10^{-2}	5.75×10^{-2}
G	2	Singlet	3.57×10^{1}	5.47×10^{1}	1.83×10^{-1}	2.60×10^{-1}	2.64×10^{-4}	3.19×10^{-4}
W'	1	Singlet	1.46×10^{1}	2.37×10^{1}	3.49×10^{-1}	5.31×10^{-1}	8.72×10^{-4}	1.17×10^{-3}
Z'	1	Singlet	8.86	1.44×10^{1}	1.81×10^{-1}	2.77×10^{-1}	5.50×10^{-4}	7.26×10^{-4}

Contact Interaction

q, q, g

q, **q**, **g**

Recent Limits

Tevatron limit on contact interaction scale (qqqq): > 2.4 - 2.7 TeV

Dijet resonance search Excluded (GeV) Excluded (GeV) Resonance Resonance A or C 260 - 1250 D 290 - 630 260 - 1110 w. 280 - 840 Ртя Ζ. q* 260 - 870 320 - 740 CDF Run II Preliminary, 1.13 fb⁻¹

Exclusion limits for W' and Z'

New Physics from Di-jets

Search for deviation from expected event rate:

- QCD from PYTHIA (here) or NLO
- Contact interaction: PYTHIA or LO

Cross section ratios

Search for resonances

Possible signals of q* relative to QCD prediction, visible for < 2 TeV (statistical uncertainty only!)

One means to avoid systematics is by looking into cross section ratios in η

Spare Cars

- Very important to have ...
- **Only test drive today:**
 - **Forward jets:**
 - Fwd jets in HF, $3 < |\eta| < 5$ probe x ~ 10⁻⁴
 - Fwd jets in CASTOR, $5.1 < |\eta| < 6.5$ probe x down to 10⁻⁶
 - Sensitivity to possible PDF saturation effects
- Many talks during this workshop!

Klaus Rabbertz

4th HERA and the LHC Workshop 27

- Very important to have ...
- But did not race at all this time:
 - **Drell-Yan**
 - **Event shapes**
 - 3-jets, 3-jet rates
 - 4-jets:
 - From QCD

Klaus Rabbertz

- From double parton interactions
- From ttbar \rightarrow bbar qq'bar lv -
- Double parton interactions in γ + 3 jets

Talk by G. Luisoni

🗢 Talk by D. Treleani

Talk by F. Bechtel

28

- Q D C
- Team ATLAS and Team CMS are preparing for first LHC data soon!
- Some tough experimental systematics to deal with
 - Trigger, alignment, jet energy scale, photon isolation, ...
- LHC will explore unknown territory in QCD
- First measurements, even with low grade 900 GeV fuel, will be QCD:
 - Minimum Bias tracks, Underlying Event
 - Important for detector alignment and MC tuning
- Measurements of jets and photons are important tests of QCD:
 - Angular distributions, inclusive jets, di-jets, photon+jets, di-photons, forward jets
 - Calibration of the calorimeters
 - Better understanding of dominant background to many new physics channels
 - Constraints on PDFs
- New physics might be just ahead!

CERN, 26.05.2008

29

And QCD is in the Pole Position!

What about you?

Thanks to all colleagues helping in preparing this presentation!

Klaus Rabbertz

CERN, 26.05.2008

4th HERA and the LHC Workshop 30

QD C

Klaus Rabbertz

CERN, 26.05.2008

4th HERA and the LHC Workshop

ATLAS Detector

Inner Detector (ID) tracker:

- Si pixel and strip + transition rad. tracker
- σ(d₀) = 15μm@20GeV
- $\sigma/p_T \approx 0.05\% p_T \oplus 1\%$

Calorimeter

- Liquid Ar EM Cal, Tile Had.Cal
- EM: σ_E/E = 10%/√E ⊕ 0.7%
- Had: σ_E/E = 50%/√E ⊕ 3%

Muon spectrometer

- Drift tubes, cathode strips: precision tracking +
- RPC, TGC: triggering
- σ/p_T ≈ 2-7%

Magnets

- Solenoid (ID) \rightarrow 2T
- Air toroids (muon) \rightarrow up to 4T

Full coverage for $|\eta|$ <2.5, calorimeter up to $|\eta|$ <5

Klaus Rabbertz

CMS Electromagnetic Calorimeter

CERN, 26.05.2008

Klaus Rabbertz

34

4th HERA and the LHC Workshop

CMS Pixel Triplets

One of the first analyses possible ... Here: 1.9 million events, assuming one month of running with 1 Hz allocated bandwidth

- CMS pixel detector:
 - 3 barrel layers (4, 7 and 10 cm radii) and 2 endcap on each side
 - 100 × 150 µm² pixels, 2%
 occupancy even at dN/dch = 5000

Hit triplets:

- Use pixel hit triplets instead of pairs, loss of acceptance but lower fake rate
- Reconstructing down to pT = 0.075 GeV/c

End December 201 D

Klaus Rabbertz

Geometrical acceptance

Hadron Spectra Systematics

Corr.

15

10-20

Syst.

5

2

2

small

small

1-2

1-5

7-9

[%]

Algorithmic efficiency 10-20 yes yes no Multiple track counting small yes no no Fake track rate small ves yes no Feed-down 2-15 yes yes no η , p_T resolution 1-5 no no no yes yes yes

CMS PAS QCD-07-001

Correction

Trigger

Total

	Total:	6.9%
2	sections	
[Diffractive cross-	0.1%
F	Particle composition	2%
E	Beam-gas & pile-up	1%
	Mis-alignment	6%
ן פ ו	Mis-estimate of secondaries Vertex reconstruction	1.5% 0.1%
F	Track selection cuts	2%

ATLAS

CMS Pixel triplets

Dependence on

part

no

yes

mult

yes

no

 $\Delta N_{\text{corrected}} = \frac{(1 - \text{fakeRate}) \cdot (1 - \text{feedDown})}{\text{geomAccep} \cdot \text{algoEffic} \cdot (1 - \text{multiCount})} \cdot \Delta N_{\text{measured}} \text{ATLAS track reconstruction}$

kine

no

yes

Summary of systematic uncertainties

Hadron Spectra: dE/dx

Kaon and proton spectra with dE/dx analysis

CMS PAS QCD-07-001

Klaus Rabbertz

Tracking Performance

Comparison of tracking performance for:

Track reconstruction efficiency

Ideal conditions

- Start-up (misaligned)
- Alignment Position Error application

Fake rate

SISCone / kT

SISCone, R=0.7 / kT, D=0.6 About 12 - 8% higher x section compared to kT $d^{2}\sigma/dp_{T}dy_{-}SISCone / d^{2}\sigma/dp_{T}dy_{-}k_{T}$ 1.2 1.1 fastNLO NLO (CTEQ65) SISCone, R=0.7 / incl. k_{T} , D=0.6 1 $0.00 \le |y| < 0.55$ $0.55 \le |\mathbf{y}| < 1.10$ 0.9 $1.10 \le |y| < 1.70$ $1.70 \le |y| < 2.50$ $2.50 \le |y| < 3.20$ 0.8 $3.20 \le |y| < 5.00$

> NLOJET++; fastNLO; fastjet: PLB641 (2006) [hep-ph/0512210], SISCone: JHEP 05 (2007) 086 [arXiv:0704.0292 (hep-ph)]

Klaus Rabbertz

10²

CERN, 26.05.2008

p_T/GeV

10³

4th HERA and the LHC Workshop 39

Constraining PDFs

One example:

Klaus Rabbertz

Recent Limits

Tevatron limit on contact interaction scale (qqqq): > 2.4 - 2.7 TeV

Dijet resonance search

CDF Preliminary 03/2008

Resonance	Excluded (GeV)	Resonance	Excluded (GeV)	
A or C	260 - 1250	D	290 - 630	
Рта	260 - 1110	w.	280 - 840	
q*	260 - 870	z.	320 - 740	

Klaus Rabbertz

Sensitivity to new physics from dijet ratios in pseudo-rapidity

Some UA1 Quotations

Quotations from Phys. Lett. Vol. 107B, no. 4:

- ... dipole magnet which produces a field of 0.7 T over a volume of 7m x 3.5m x 3.5m ...
- ... yields space points at centimetre intervals on the detected tracks
- ... two short accelerator development periods in October and November 1981 ...
- The events were **scanned by physicists** on a Megatek display.
- ... was examined independently by all physicists who participated in the scanning. The combined effect of the scanner variations ...