## Jet Areas and Subtraction

Matteo Cacciari LPTHE Paris

Work in collaboration with
Gavin Salam and Gregory Soyez


Jet areas
Determination and subtraction of pileup and underlying event

Not a talk on jets.....

Making a different use of jets

## The physics case



In a realistic set-up underlying event (UE) and pile-up (PU) from multiple collisions produce many soft particles which can 'contaminate' the hard jet
$\mathrm{P}_{\mathrm{T}}(\mathrm{jet}) \sim \mathrm{P}_{\mathrm{T}}$ (parton) +
Average underlying momentum density

## The physics case

Challenge at high-energy/high-luminosity machines:
reconstruct objects from jets when a lot of spurious activity is present


Can we get to know the momentum density of the UE/PU?
Can we subtract it from the jet to find the 'true' momentum? But...wait...what is the 'size' of a jet??

## An LHC dijet event



## Jet areas

## Not one, but three definitions of a jet's size:

## Voronoi area <br> (not discussed here in detail)

Passive area
Mimics effect of pointlike radiation
(also not discussed here in detail)

## Active area

Mimics effect of diffuse radiation
(The three areas coincide in the high particle density limit)
[Showing here some theory, but all areas are available natively, for all ICS algorithms and with a user-friendly interface, from FastJet,
www.lpthe.jussieu.fr/~salam/fastjet]

## Jet areas

## Active Area

Add many ghost particles in random configurations to the event. Cluster many times.
Count how many ghosts on average get clustered into a given jet J.


Active area

## Jet areas calculation

Tools needed to implement it:
I. An infrared safe jet algorithm (the ghosts should not change the jets)
2. A reasonably fast implementation (we are adding thousands of ghosts)

Both are available

In both cases, determine the area during the clustering procedure, not after it

## Jet active areas




## Dispelling the cone-is-a-circle myth

## A jet of 'radius' $\mathbf{R}$ will surely have area $\boldsymbol{\pi} \mathbf{R}^{\mathbf{2}}$, right?

Well, it depends.....
Passive areas of a single hard particle are indeed $\boldsymbol{\pi} \mathbf{R}^{\mathbf{2}}$

However, active areas are not:

$$
\begin{aligned}
& k_{t} \rightarrow 0.8 \mathrm{I} \pi R^{2} \\
& \text { Cam/Aa } \rightarrow 0.8 \mathrm{I} \pi R^{2} \\
& \text { SISCone } \rightarrow \pi R^{2} / 4 \\
& \text { anti- } k_{t} \rightarrow \pi R^{2}
\end{aligned}
$$

Recall that 'area' is how much rubbish a jet can pick up.
Its knowledge is essential in order to subtract it from measurements
In practice, one calculates numerically with FastJet the area of any given jet

## <theory>

## Jet areas

Real events have more than a single hard particle. Add a second (soft) one at a distance $\Delta_{12}$

$$
\begin{array}{ccc}
1 & \Delta_{12} & 2 \\
\text { hard } & \text { soft }
\end{array}
$$



The jet area depends on the distance between the particles

Note very small active area for SISCone!
limit
Passive areas (and SISCone's active area) of jets with two particles (one hard, one soft) can be calculated analytically, while the others are obtained numerically

## Jet areas

Weigh the probability of emission of the soft particle with the leading QCD matrix element:

$$
\langle\Delta a r e a\rangle=\int C_{1} \frac{\alpha_{s}\left(p_{t 2} \Delta_{12}\right)}{\pi} \frac{d p_{t 2}}{p_{t 2}}\left[\frac{d \Delta_{12}}{\Delta_{12}}\right]_{+}\left(\begin{array}{ccc}
1 & \Delta_{12} & 2 \\
0 & - & \text { soft }
\end{array}\right)
$$

The result is an anomalous dimension:
areas change with transverse momentum of the jet in a predictable way:

$$
\langle\Delta a r e a\rangle=d \frac{C_{1}}{\pi b_{0}} \ln \frac{\alpha_{s}\left(Q_{0}\right)}{\alpha_{s}\left(R p_{t 1}\right)}
$$

In a similar way one can also predict the evolution of the dispersion, calculating

$$
\left\langle\Delta \text { area }^{2}\right\rangle=s^{2} \frac{C_{1}}{\pi b_{0}} \ln \frac{\alpha_{s}\left(Q_{0}\right)}{\alpha_{s}\left(R p_{t 1}\right)}
$$

## Passive areas: analytical results

MC, Salam, Soyez, arXiv:0802. I I 88

$$
\begin{aligned}
d_{k_{t}, R} & =\left(\frac{\sqrt{3}}{8}+\frac{\pi}{3}+\xi\right) R^{2} \simeq 0.5638 \pi R^{2}, \\
d_{\text {Cam }, R} & =\left(\frac{\sqrt{3}}{8}+\frac{\pi}{3}-2 \xi\right) R^{2} \simeq 0.07918 \pi R^{2}, \\
d_{\text {SISCone }, R} & =\left(-\frac{\sqrt{3}}{8}+\frac{\pi}{6}-\xi\right) R^{2} \simeq-0.06378 \pi R^{2}, \quad \text { Negative! } \\
s^{2}: \quad s_{k_{t}, R}^{2} & =\left(\frac{\sqrt{3} \pi}{4}-\frac{19}{64}-\frac{15 \zeta(3)}{8}+2 \pi \xi\right) R^{4} \simeq\left(0.4499 \pi R^{2}\right)^{2}, \\
s_{\text {Camm }, R}^{2} & =\left(\frac{\sqrt{3} \pi}{6}-\frac{3}{64}-\frac{\pi^{2}}{9}-\frac{13 \zeta(3)}{12}+\frac{4 \pi}{3} \xi\right) R^{4} \simeq\left(0.2438 \pi R^{2}\right)^{2}, \\
s_{\text {SISCone }, R}^{2} & =\left(\frac{\sqrt{3} \pi}{12}-\frac{15}{64}-\frac{\pi^{2}}{18}-\frac{13 \zeta(3)}{24}+\frac{2 \pi}{3} \xi\right) R^{4} \simeq\left(0.09142 \pi R^{2}\right)^{2} .
\end{aligned}
$$

with $\xi \equiv \frac{\psi^{\prime}(1 / 6)+\psi^{\prime}(1 / 3)-\psi^{\prime}(2 / 3)-\psi^{\prime}(5 / 6)}{48 \sqrt{3}} \simeq 0.507471$

## Jet areas

|  | $\text { area } / \pi R^{2}$ |  | dispersion | rsion <br> active <br> $\Sigma(1 \mathrm{PJ})$ | d or D <br> passive active |  | s or S <br> passive active |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k_{t}$ | 1 | 0.81 | 0 | 0.28 | 0.56 | 0.52 | 0.45 | 0.41 |
| Cam/Aachen | 1 | 0.81 | 0 | 0.26 | 0.08 | 0.08 | 0.24 | 0.19 |
| SISCone | 1 | 1/4 | 0 | 0 | -0.06 | 0.12 | 0.09 | 0.07 |
| anti- $k_{t}$ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | single hard particle |  |  |  | emission of a second perturbative particle (coeff. of anomalous dimension |  |  |  |

## Some remarkable features

- SISCone has very small active area
- SISCone's anomalous dimension changes from negative for passive area to positive for active area
- kt has largest anomalous dimension
- anti-kt has constant area (null anomalous dimension): it's a perfect cone


## Jet area scaling violations at (simulated) LHC



## Jet area scaling violations at (simulated) LHC

Check anti- $\mathrm{k}_{\mathrm{t}}$ behaviour: scaling violations indeed absent, as predicted


## </theory>

## Jet areas as a tool:

## Underlying event and pileup determination and subtraction

## Common approach



Marchesini-Webber idea:
look at transverse region to measure underlying event

## Topological selection

The jets are classified as belonging to the noise on the ground of their position

## Common approach



## The key observation

LHC: dijet event + high-lumi pilup

## $\mathbf{P}_{\mathbf{T}}$ /Area is fairly constant, except for the hard jets



The distribution of background jets establishes its own average


## Dynamical selection

The jets are classified as belonging to the noise on the ground of their characteristics

## Extraction of average noise momentum density

## $\rho \equiv$ median <br> $\left[\left\{\frac{p_{t}^{j e t}}{\text { Area }_{j e t}}\right\}\right]$

(Taking the median of the distribution is a nice trick to get rid of the possible bias from the few hard jets)

One can also estimate the fluctuations (yellow band)

## Noise levels

Pileup @ LHC

$\rho \simeq 25 \mathrm{GeV}$

## UE @ LHC


$\rho \simeq 3 \mathrm{GeV}$

## Underlying Event estimation

To test the procedure for the Underlying Event, compare the measurement of the background level made with areas with the known amount a Monte Carlo put in


## Underlying Event estimation: LHC

LHC


Herwig and Pythia differ. A similar analysis on the data would immediately tell which one (if either) is right

## A practical application of areas: subtraction

[MC, Salam, arXiv:0707.I378]
When a hard event is superimposed on a roughly uniformly distributed background, study of transverse momentum/area of each jet allows one to determine the noise density $\boldsymbol{\rho}$ (and its fluctuation) on an event-by-event basis

Once measured, the background density can be used to correct the transverse momentum of the hard jets:

$$
p_{T}^{\text {hard jet, corrected }}=p_{T}^{\text {hard jet, raw }}-\rho \times \text { Area }_{\text {hard jet }}
$$

## Subtraction in Fastjet

```
// the input particles' 4-momenta
vector<fastjet::PseudoJet> input_particles;
// choose the jet algorithm
fastjet::JetDefinition jet_def(kt_algorithm,R);
// define the kind of area
fastjet::GhostedAreaSpec ghosted_area_spec(ghost_etamax);
fastjet::AreaDefinition area_def(ghosted_area_spec);
// perform the clustering
fastjet::ClusterSequenceArea cs(input_particles,jet_def,area_def);
// get the jets with pt > 0
vector<fastjet::PseudoJet> jets = cs.inclusive_jets();
// a jet transverse momentum, area, and area 4-vector
double pt = jets[0].perp();
double area = cs.area(jets[0]);
fastjet::Pseudojet area_4vector = cs.area_4vector(jets[0]);
```

```
// get the median, i.e. rho
double rho = cs.median_pt_per_unit_area(rapmax);
double rho_4v = cs.median_pt_per_unit_area_4vector(rapmax);
// subtract
double pt_sub = pt - rho * area;
fastjet::Pseudojet p_sub = jets[0] - rho_4v * area_4vector;
```

NB. The "_4vector" variants also correct jet directions, and are better for large $R$

## Reconstructed Z' mass

## Let's discover a leptophobic Z' and measure its mass:



## Heavy Ion Collisions: PbPb @ LHC

Background much larger than even LHC hi-lumi pileup:

$$
\left.\frac{d N_{c h}}{d y}\right|_{y=0}=1600 \Rightarrow \rho_{\text {background }} \equiv \frac{d p_{T}}{d y d \phi} \sim 250 \mathrm{GeV}
$$

Hence, a jet with $\mathrm{R}=0.4$ on average gets an additional

$$
\Delta p_{T} \simeq \rho_{\text {background }} \pi R^{2} \sim 100 \mathrm{GeV}
$$

and yet, not so much the size of this background, but rather its fluctuations, are the real obstacle to its subtraction

## Inclusive jets in PbPb at LHC



NB. No minimum pt cut
No a posteriori Monte Carlo correction

## Conclusions

8
Using infrared safe jet algorithms allows one to analyse them as legitimate observables in pQCD, including more exotic (and previously unexplored) characteristics like their area

The area itself can be used for background (UE and/or min-bias) estimation and subtraction, opening the way to a more accurate, and theoretically motivated, use of jet clustering in high luminosity and even heavy ions collisions environments

All these tools available in FastJet (www.lpthe.jussieu.fr/~salam/fastiet)
List of relevant papers:
MC, Salam, Dispelling the $N^{3}$ myth for the $k_{t}$ jet-finder, hep-ph/05I22I0
Salam, Soyez, A Seedles infrared safe cone algorithm, arXiv:0704.0292
MC, Salam, Pileup subtraction using jet areas, arXiv:0707.I378
MC, Salam, Soyez, The catchment area of jets, arXiv:0802:I I88
MC, Salam, Soyez, The anti- ${ }_{t}$ jet clustering algorithm, arXiv:0802: I I 89
Les Houches 2007 proceedings, arXiv:0803.0678

