HERA-LHC CERN, May 27, 2008

Jet Areas and Subtraction

Matteo Cacciari LPTHE Paris Work in collaboration with Gavin Salam and Gregory Soyez

Determination and subtraction of pileup and underlying event

Not a talk on jets.....

Making a different use of jets

The physics case

In a realistic set-up underlying event (UE) and pile-up (PU) from multiple collisions produce many soft particles which can 'contaminate' the hard jet

$$P_T$$
 (jet) ~ P_T (parton) +

Average underlying momentum density

The physics case

Challenge at high-energy/high-luminosity machines: reconstruct objects from jets when a lot of spurious activity is present

Can we get to know the momentum density of the UE/PU? Can we subtract it from the jet to find the 'true' momentum? But...wait...what is the 'size' of a jet??

An LHC dijet event

Not one, but three **<u>definitions</u>** of a jet's size:

MC, Salam, Soyez, arXiv:0802.1188

Voronoi area

(not discussed here in detail)

Passive area

Mimics effect of **pointlike** radiation (also not discussed here in detail)

Mimics effect of **diffuse** radiation

(The three areas coincide in the high particle density limit)

[Showing here some theory, but all areas are available natively, for all ICS algorithms and with a user-friendly interface, from **FastJet**, www.lpthe.jussieu.fr/~salam/fastjet]

Jet areas

MC, Salam, Soyez, arXiv:0802.1188

Active Area

Add **many** ghost particles in random configurations to the event. Cluster many times.

Count how many ghosts <u>on average</u> get clustered into a given jet J.

$$A(J) = \lim_{v_g \to \infty} \langle A(J | \{g_i\}) \rangle_g$$

Active area

Tools needed to implement it:

- I. An infrared safe jet algorithm (the ghosts should not change the jets)
- 2. A reasonably **fast implementation** (we are adding thousands of ghosts) Both are available

In both cases, determine the area <u>during</u> the clustering procedure, <u>not after it</u>

Dispelling the cone-is-a-circle myth

A jet of 'radius' R will surely have area πR^2 , right?

Well, it depends.....

Passive areas of a single hard particle are indeed πR^2 However, active areas are not: $\begin{cases} k_t \rightarrow 0.81 \ \pi R^2 \\ Cam/Aa \rightarrow 0.81 \ \pi R^2 \\ SISCone \rightarrow \ \pi R^2 / 4 \\ anti-k_t \rightarrow \ \pi R^2 \end{cases}$

Recall that 'area' is how much rubbish a jet can pick up. Its knowledge is essential in order to subtract it from measurements

In practice, one calculates numerically with FastJet the area of any given jet

<theory>

Jet areas

Real events have more than a single hard particle. Add a second (soft) one at a distance Δ_{12}

Passive areas (and SISCone's active area) of jets with two particles (one hard, one soft) can be calculated **analytically**, while the others are obtained numerically

Jet areas

Weigh the probability of emission of the soft particle with the leading QCD matrix element:

$$\left\langle \Delta area \right\rangle = \int C_1 \frac{\alpha_s(p_{t2}\Delta_{12})}{\pi} \frac{dp_{t2}}{p_{t2}} \left[\frac{d\Delta_{12}}{\Delta_{12}} \right]_+ \begin{pmatrix} I & \Delta_{12} & 2\\ \bullet & --- & \bullet\\ hard & soft \end{pmatrix}$$

The result is an **anomalous dimension**:

areas change with transverse momentum of the jet in a predictable way:

$$\langle \Delta area
angle = \mathbf{d} \; \; rac{C_1}{\pi b_0} \ln rac{lpha_s(Q_0)}{lpha_s(Rp_{t1})}$$

In a similar way one can also predict the evolution of the dispersion, calculating

$$\langle \Delta area^2 \rangle = s^2 \frac{C_1}{\pi b_0} \ln \frac{\alpha_s(Q_0)}{\alpha_s(Rp_{t1})}$$

Passive areas: analytical results

MC, Salam, Soyez, arXiv:0802.1188

$$d_{k_t,R} = \left(\frac{\sqrt{3}}{8} + \frac{\pi}{3} + \xi\right) R^2 \simeq 0.5638 \,\pi R^2 \,,$$

$$d_{\text{Cam},R} = \left(\frac{\sqrt{3}}{8} + \frac{\pi}{3} - 2\xi\right) R^2 \simeq 0.07918 \,\pi R^2 \,,$$

$$d_{\text{SISCone},R} = \left(-\frac{\sqrt{3}}{8} + \frac{\pi}{6} - \xi\right) R^2 \simeq -0.06378 \,\pi R^2 \,, \quad \text{Negative!}$$

$$s_{k_t,R}^2 = \left(\frac{\sqrt{3}\pi}{4} - \frac{19}{64} - \frac{15\zeta(3)}{8} + 2\pi\xi\right)R^4 \simeq (0.4499 \pi R^2)^2,$$

$$s_{Cam,R}^2 = \left(\frac{\sqrt{3}\pi}{6} - \frac{3}{64} - \frac{\pi^2}{9} - \frac{13\zeta(3)}{12} + \frac{4\pi}{3}\xi\right)R^4 \simeq (0.2438 \pi R^2)^2,$$

$$s_{SISCone,R}^2 = \left(\frac{\sqrt{3}\pi}{12} - \frac{15}{64} - \frac{\pi^2}{18} - \frac{13\zeta(3)}{24} + \frac{2\pi}{3}\xi\right)R^4 \simeq (0.09142 \pi R^2)^2$$

with
$$\xi \equiv \frac{\psi'(1/6) + \psi'(1/3) - \psi'(2/3) - \psi'(5/6)}{48\sqrt{3}} \simeq 0.507471$$

let areas

	area/πR ²		dispersion		d or D		s or S	
	passive	active	passive	active	passive	active	passive	active
	$a(1\mathrm{PJ})$	$A(1\mathrm{PJ})$	$\sigma(1PJ)$	$\Sigma(1 P J)$	d	D	s	S
k_t	1	0.81	0	0.28	0.56	0.52	0.45	0.41
Cam/Aachen	1	0.81	0	0.26	0.08	0.08	0.24	0.19
SISCone	1	1/4	0	0	-0.06	0.12	0.09	0.07
anti- k_t	1	1	0	0	0	0	0	0
	single hard particle				emission of a second perturbative particle (coeff. of anomalous dimension)			

Some remarkable features

- SISCone has very small active area
- SISCone's anomalous dimension changes from negative for passive area to positive for active area
- kt has largest anomalous dimension
- anti-kt has constant area (null anomalous dimension): it's a **perfect cone**

Jet area scaling violations at (simulated) LHC

Averages and dispersions evolution from Monte Carlo simulations in good agreement with simple LL calculations

Area scaling violations are a legitimate observable!

(Though it might not be the best place where to measure α_s )

Jet area scaling violations at (simulated) LHC

MC, Salam, Soyez, arXiv:0802.1189

Check anti-k, behaviour: scaling violations indeed absent, as predicted

</theory>

Jet areas as a tool:

Underlying event and pileup determination and subtraction

Common approach

Marchesini-Webber idea: look at transverse region to measure underlying event

Topological selection

The jets are classified as belonging to the noise on the ground of their **position**

Common approach

The key observation

LHC: dijet event + high-lumi pilup

p_{T} /Area is fairly constant, except for the hard jets

Extraction of average noise momentum density

(Taking the median of the distribution is a nice trick to get rid of the possible bias from the few hard jets)

Noise levels

 $\rho \simeq 25 \text{ GeV}$

 $\rho \simeq 3 \text{ GeV}$

Underlying Event estimation

To test the procedure for the Underlying Event, compare the measurement of the background level made with areas with the known amount a Monte Carlo put in

Input from Monte Carlo

Underlying Event estimation: LHC

LHC 1 herwig pythia 0.8 0.8 0.8 Monte Carlo measured measured 0.6 input 0.6 R = 0.40.6 R=0.5 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 2 3 5 1 2 3 0 1 2 3 0 1 4 0 4 5 p_t / A [GeV] p_t / A [GeV] p_t / A [GeV] 1 1 0.8 0.8 0.8 measured measured measured 0.6 R=0.6 0.6 R=0.7 0.6 R=0.8 0.4 0.4 0.4

0.2

0.2

0.2

0

5

5

A practical application of areas: subtraction

[MC, Salam, arXiv:0707.1378]

When a hard event is superimposed on a **roughly uniformly distributed background**, study of **transverse momentum/area** of each jet allows one to determine the noise density ρ (and its fluctuation) on an event-by-event basis

Once measured, the background density can be used to correct the transverse momentum of the hard jets:

$$p_T^{\text{hard jet, corrected}} = p_T^{\text{hard jet, raw}} - \rho \times \text{Area}_{\text{hard jet}}$$

Subtraction in FastJet

```
// the input particles' 4-momenta
vector<fastjet::PseudoJet> input_particles;
// choose the jet algorithm
fastjet::JetDefinition jet_def(kt_algorithm,R);
// define the kind of area
fastjet::GhostedAreaSpec ghosted_area_spec(ghost_etamax);
fastjet::AreaDefinition area_def(ghosted_area_spec);
// perform the clustering
fastjet::ClusterSequenceArea cs(input_particles,jet_def,area_def);
// get the jets with pt > 0
vector<fastjet::PseudoJet> jets = cs.inclusive_jets();
// a jet transverse momentum, area, and area 4-vector
double pt = jets[0].perp();
double area = cs.area(jets[0]);
fastjet::Pseudojet area_4vector = cs.area_4vector(jets[0]);
```

```
// get the median, i.e. rho
double rho = cs.median_pt_per_unit_area(rapmax);
double rho_4v = cs.median_pt_per_unit_area_4vector(rapmax);
// subtract
double pt_sub = pt - rho * area;
fastjet::Pseudojet p_sub = jets[0] - rho_4v * area_4vector;
```

NB. The "_4vector" variants also correct jet directions, and are better for large R

Reconstructed Z' mass

Let's discover a leptophobic Z' and measure its mass:

Heavy Ion Collisions: PbPb @ LHC

Background much larger than even LHC hi-lumi pileup:

 $\frac{dN_{ch}}{dy}\Big|_{y=0} = 1600 \implies \rho_{background} \equiv \frac{dp_T}{dyd\phi} \sim 250 \text{ GeV}$

Hence, a jet with R = 0.4 on average gets an additional

$$\Delta p_T \simeq \rho_{background} \, \pi R^2 \sim 100 \, \mathrm{GeV}$$

and yet, not so much the size of this background, but rather its **fluctuations**, are the real obstacle to its subtraction

Inclusive jets in PbPb at LHC

NB. No minimum pt cut No a posteriori Monte Carlo correction

Conclusions

Ş

Using infrared safe jet algorithms allows one to analyse them as legitimate observables in pQCD, including more exotic (and previously unexplored) characteristics like their **area**

The area itself can be used for **background (UE and/or min-bias)** estimation and subtraction, opening the way to a more accurate, and theoretically motivated, use of jet clustering in high luminosity and even heavy ions collisions environments

All these tools available in **FastJet** (<u>www.lpthe.jussieu.fr/~salam/fastjet</u>)

List of relevant papers:

MC, Salam, Dispelling the N^3 myth for the k_{\pm} jet-finder, hep-ph/0512210 Salam, Soyez, A Seedles infrared safe cone algorithm, arXiv:0704.0292 MC, Salam, Pileup subtraction using jet areas, arXiv:0707.1378 MC, Salam, Soyez, The catchment area of jets, arXiv:0802:1188 MC, Salam, Soyez, The anti- k_{\pm} jet clustering algorithm, arXiv:0802:1189 Les Houches 2007 proceedings, arXiv:0803.0678