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Motivations of Shower Development

Actually I have heard two of them...

X “Earn as many citations as PYTHIA does ...”

v Improving classical shower approaches based on 20-25
years of experience. HERWIG++, ARIADNE/ VINCIA, |
PYTHIA / DIPOLE SHOWER (by Mainz group) — Not

=  Matching at Born level (CKKW, MLM, ...) approximations pre dictive!
= Matching at NLO level (MC@NLO, ... l

... and the one what we try to follow

v Making parton shower predictive (will go into NLOJET++)

= The bottleneck is the color treatment.



Shower Family Tree

Approx. in the

NLO Parton Shower |_evolution equation | Parton Shower @ NNLL

Full spin and color correlations Full spin and color correlations “Dyveamland”

t ____________________________________________________________________________________________

LOP Sh Approx. in the
arton shower uti ti

comeramet | Parton Shower @ NLL

Full spin and color correlations

Full spin and color correlations —>
-JHEP 0709 114, 2007

Approx. in color Approx. in spin

“Reality”

Leading color shower
Full spin but no color correlations Spm aver aged shower
[Shemie Full color but no spin correlations
- arXiv:0805.0216 [hep-ph]

Approx. in STA Approx. in color

Classical Shower
No spin and color correlations

- HERWIG, PYTHIA, ARIADNE,

DIPOLE SHOWER, ...
- JHEP 0803:030, 2008




Do we need subleading color?

Matrix element square is

y " y 1
{ctm c
where A({p, f, c}m) is the color subamplitudes of the color
configuration {c}m
e

Cross sections at /s = 1960 GeV, with structure functions, in nanobarns,
pr >10GeV |7/<2.0.

Process o, : Normal o,: Large Nc o, — O,
component O,
ud—W+g 0.1029(5)D+01 0.1158(5)D+01 13%
ud—W+gg 0.1018(8)D+00 0.1283(10)D+00 | 26%
ud—W+ggg | 0.1119(17)D-01 | 0.1564(22)D-01 | 40%

ud—W+ggee | 0.1339(36)D-02 | 0.2838(71)D-02 | 120%
Yes, we
Results were calculated by HELAC

need.




Do we need subleading color?

Parton shower starts from the tree level exact matrix elements

M({p. frm)? = NS { A({p. f, b))

{ctm

+ 3 A focha) Alp. S c'}m>*}

{c¢'}m C

How to assign color in the shower when the evolution starts from the interference
contributions? In classical shower there is no way. With a simple trick we can get the
normalization right.

JA{p, f. et
> 1A{p, frchm)l

{c}m

Probability of {c},, Yes, we
| need.

Note this is just the standard K-factor trick.

> M, f1m)[

M{p, f,ctm)|” =




Do we need subleading color?

Some people are thinking about NLO level shower. I think it is too early but
who knows they might be right. It is clear that there is no way to go higher
order with leading color approximation.

There are two perturbative parameters. The formal expansion of the
splitting operator is

Furthermore we need two color indices to represent a partonic states
(interference terms).

Note that H1s an operator and it is impossible to do this expansion in

practice. Yes, we
need.



Density Operator

The physical cross section is

=3 [ (e, Ph] Telplp: £ ) FCip, £

N—— ——

density operator in color ® spin space

The density operator is

fa/A(naa :u%’)fb/B(nba :u%’) <
2NaMbPA DB

,0({]?, f}m) — |M({pa f}m)>

MEp, fm)]

or expanding it on a color and spin basis

p({p, fYm) = Y s chu) plp, £,8'.¢ s,¢km) ({s'. ¢}

SCSC




Statistical States

The set of functions p({p, f,s’, ¢, s, c}m ) forms a vector space.

BaSiS: ‘{pa f7 3/76,7876}7”)
Completeness relation :

1= Z_/ [d{p’ f7 S/,C/,S,C}m] }{p7 f7 8/76/7876}7”) ({p7 f’ 8/7617876}””‘

Inner product of the basis states:

({p, f,5, ¢, 8, 3m B, £,5,8 .5, ) = O 6({ps £, 8,y 8, Ymi 1B, [, 8,5, E}n)

A physical state which is related to the density matrix:

(

0) = [ [alpfs sl (D £.5' . hn) [0 125, s )




Shower Evolution

Using the factorization properties of the QCD the approximated order by order

calculation can be organized according to

U ) =1+ /t AUt () V)

From the unitary condition: i

(L) = (1| Hi(t)

—
I
I

]k

; I
+ I
I

k

resolved radiations unresolved radiation

The shower form of the solution is
t

UL, t) =Nt t) + / driU(t,7) Hi (1) N(7,t")

t/

and the no-splitting operator is

/

N(t,t") = Texp (— /tt dr V(T))



Full Splitting Operator

<{p7 f’ §,7é/7 §7é}m+1‘HI(t)‘{p7 f7 8/76/7 Sac}m)
R A 2 R ~ 2
_ Z (m + 1)n0(a)n0(b) U fasa(i ’MF)fb/B(nbvﬂF)

le{a,b,1,...,m} nc(&)nc(l;) Nallb fa/A(Uaa U%’)fb/B (771 M%)

X ({]37 f}m—l—l‘Pl‘{p) f}’m) 5(t — Tl({ﬁa f? <§,7 éla <§7 é}m—l—l))

’ |:9(fm+1 = g) Z {<{élaé}m+1|g(lvk§{f}ﬂﬂ—l)‘{cl’c}m)
kE{a,Z,;z...,m}

« [Alk({p}mﬂ) ({8, 8 ma [W( ks {f, D) {5, 8} m)

o %({glv §}m+1 ‘W(l, l5 {anﬁ}erl)HS/v S}m)}
+ ({¢, 1 |Gk, L { frmrr) [{Cs chm)
[ A (b)) ({58 ms WK s {F. 5t {5 5

- 5 U8 8 s WL L D) (551 |

+ 6(fm—|—1 7& g) ({6/7 é}’m+1 ’g(la l5 {f}m—l—l)‘{clv C}m>W<l7 l; {faﬁ}m—l—l)




Full Splitting Operator

({p, f,8,¢, 3, msr [Ha@®)|{p, £, 5, ¢, 5, ¢}m)

£ (D 2\ f (D 112 )

z z
; TTOO
oo itt ., 000
TOTO 4 i
vk
{ctm : {}m

o (U7 > mF L7V o U PTmF T ’ofm}Jf

+ 6(fm—|—1 7& g) ({6/7 é}’m+1 ’g(la l; {f}m—l—l)‘{clv C}m>W<l7 l; {faﬁ}m—l—l)




Solution of the Evolution Equation

The idea is split the splitting operator “good” and “bad” part and expand the
evolution operator in the “bad” splitting operator.

Hr(t) = HY (1) + H (1)
/ \

Fully exponentiated Subtracted

The inclusive splitting operators are
AV =R and AV @) = 1P @)

Now the good part of the evolution operator is

t
U (8 = N (8, 1) + / dr D (t, YR (DN (7, )

t/
The full evolution operator is given by

t

Ut t") =uU' i, t) +/ drid(t, ) [H\ (1) = v (U (7, 1)

t/



Solution of the Evolution Equation

The idea is split the splitting operator “good” and “bad” part and expand the
evolution operator in the “bad” splitting operator.

Hr(t) = HY (1) + H (1)
/ \

Fully exponentiated Subtracted

-

The Z/{(t,t/) 7/(J) (t,t ) /t dr 1) (t,7) [H(S)( I P(S) (7)] () (T, t/)

Now /de/ dri U (J)tT [H(S)( ) V(S)(7'2)]
£/ £/

$ U (13, 7)) [H (2) = VO (e UD (71, )




Solution of the Evolution Equation

'''''

The idea is spg=—

evolution ope

The Ut )

Now

| the

) (7,1')




Jet Splitting Operator

We approximate the color operator using a projection

({éla é}m+1 |g(k, l§ {f}m+1)‘{cla C}m) — ({élv é}m+1 ‘t}; 02 tl‘{cla C}m)

v

({élv é}m—H ‘C(l, m -+ 1) g(ka l§ {f}m—kl)‘{clv C}m)

The projection keep the color connected part

{c,c}m+1) 1 and m+1 color connected

C(l7 m —+ 1)‘{6/7 C}m—l—l) — n {Cl}m+1 and in {C}m—|—1
0 otherwise

The corresponding quantum level operator is

Clom+1)=Cl,m+1)@CIm+1)



Jet Splitting Operator

We approximate the color operator using a projection

({6/ l ! z
; TEOD
oo ni1} 00000
I 5 OO0
C(l E :
1¢tm : {C,}fr}z

\_

The corresponding quantum level operator is

Clom+1)=Cl,m+1)@CIm+1)

ed



Jet Splitting Operator

Now the jet splitting operator is

({5, £, 8,8, & mm [H (O)|{p, £, ¢ 8, ¢Fm) ® This operator can evolve
ne(a)ne(b) namy fasa(fas %) fo 500, 1F) interference contribution.
= e T ) i, ForaCne ) i)
lefa,bi1,....m) R LN G = il ol moflkenlfiness
X ({ﬁa f}m-l—l ‘Pl ‘ {p7 f}m) 5(t o ﬂ({ﬁa j?a §/7 é/a §7 é}m—I—l)) Contributions lncluded
% le(fmﬂ - g)k { bzl } ® Wide angle pure soft
€1a,b,1,....m
kAl contributions are not fully
{ ({¢, & mir|CLm + DG ks {Fhmsn) [ {¢ ¢}m) included. Omitted gart 1S
- - / suppressed by 1/N; . It is
. {A”“ ({5 Shmaa WA B AT, Pl ) [{S', 5bm) treated perturbatively.
1, ., . Ca ,
_ 5 ({S 73}m+1 ’W(l, Z? {f?]f}mﬁ—l)‘{s 78}m)} P The Corresponding inclusive
+ ({¢, &1 |CLm + DGR, G { f hmr)|{s chim) splitting operator can be

X {Alk ({8, 8Ymir [ Wk, LA S DY mr ) {8 sm exponentiated easily.

)
- %({é’, $tmr WA LS DY man)[{s s}m)} } ® Leads to a quasi Markovian
process.

+0(fmi1 # 8) G L{F tmr)W(LLT; {f,ﬁ}m+1>]



({p, £,5,¢, 8, mur[H 0 {p, £, ¢ 5, ¢hm)

Jet Splitting Operator

Now the jet splitting operator is

® This operator can evolve

p
I N (t, t,) 7, s s, s, C}m) — €XPp {_ l/ dr [M({p, [, ctm) + A2({p, f, Cl}m)]}
" X |p, f,s',¢ s, ¢tm)

ke{a,b,1,...,m}
kAl

{({é', S [C 4+ DG ks {Fhms) [ )
< A ({88} s Wk {F D ma ) {5, 51 )

o %({glvé}anl’W(l?l;{Jgaﬁ}anl)‘{S/as}m)} Ps
+ ({¢, etmaa|CUm+ 1)G(k, L { fYma1) {Cs c}m)
< [ A (88} Wk B L 5[5, 8)om

)
Lorar o p ’
B 5({8 ,S}m+1’W(l’l; {f,p}m—l—l)‘{s ,S}m)} } o

+0(fmi1 # 8) G L{F tmr)W(LLT; {f,ﬁ}m+1>]

1de angle pure soft
contributions are not fully
included. Omitted part is
suppressed by 1/N: . Tt is
treated perturbatively.

The corresponding inclusive
splitting operator can be
exponentiated easily.

Leads to a quasi Markovian
process.




Leading Color Approximation

Recalling the evolution equation of the “jet” evolution operator

t
U (t, ) :N(J)(t,t’)—l—/ dr D (t, YR (DN (7, )

t/

and from this the evolution equation of the leading color approximation can be given
by another projection

t

U (t,t") = N (t, ) Pp + / dr UL (¢, YR (TN D (1,4 P

t/

where the projection Pp keeps the color diagonal contributions only

Pol(esc}n) = {O{cx chm) it {ehm = {¢}m

otherwise



Conclusions

® We have a well define formalism to describe parton shower
algorithms. Note we have equation!

® The formalism itself help us to have better understanding of
already know effects and approximations (color coherence,
leading color approximation,..)

® We have shown that it is possible to compute parton shower
with full color efficiently and systematically using mainly
standard Monte Carlo techniques.

® Implementation .... (coming soon ....)



