EVOLUTION WITH UBLEADING COLOR CONTRIBUTIONS

ZoltÁn NAgy

CERN, Theoretical Physics
in collaboration with Dave Soper

Actually I have heard two of them...

X "Earn as many citations as PYTHIA does ..."
\checkmark Improving classical shower approaches based on 20-25 years of experience. Herwig++, Ariadne/Vincia, Pythia/ Dipole Shower (by Mainz group)
\Rightarrow Matching at Born level (CKKW, MLM, ...)
\Rightarrow Matching at NLO level (MC@NLO, ...)

... and the one what we try to follow

\checkmark Making parton shower predictive (will go into NLOJET++)
\Rightarrow The bottleneck is the color treatment.

Shower Family Tree

NLO Parton Shower

Full spin and color correlations

Approx. in the $\xrightarrow{\text { evolution equation }}$

Parton Shower @ NNLL

Full spin and color correlations
"Dreamland"
"Partial Reality"

LO Parton Shower

 Full spin and color correlations - JHEP 0709 114, 2007Approx. in the evolution equation
"Reality"

Leading color shower
Full spin but no color correlations
-Herwig

- arXiv:0805.0216 [hep-ph]

Parton Shower @ NLL
Full spin and color correlations

Classical Shower
No spin and color correlations

- Herwig, Pythia, Ariadne, DIPOLE SHOWER, ...
- JHEP 0803:030, 2008

Do we need subleading color?

Matrix element square is

$$
\left|\mathcal{M}\left(\{p, f\}_{m}\right)\right|^{2}=N_{c}^{n} \sum_{\{c\}_{m}}\left|A\left(\{p, f, c\}_{m}\right)\right|^{2}+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)
$$

where $A\left(\{p, f, c\}_{m}\right)$ is the color subamplitudes of the color configuration $\{c\}_{m}$

Cross sections at $\sqrt{s}=1960 \mathrm{GeV}$, with structure functions, in nanobarns, $p_{T}>10 \mathrm{GeV}|\eta|<2.0$.

Process	$\sigma_{0}:$ Normal	$\sigma_{1}:$ Large Nc component	$\frac{\sigma_{1}-\sigma_{0}}{\sigma_{0}}$
$\mathrm{ud} \rightarrow \mathrm{W}+\mathrm{g}$	$0.1029(5) \mathrm{D}+01$	$0.1158(5) \mathrm{D}+01$	13%
$\mathrm{ud} \rightarrow \mathrm{W}+\mathrm{gg}$	$0.1018(8) \mathrm{D}+00$	$0.1283(10) \mathrm{D}+00$	26%
$\mathrm{ud} \rightarrow \mathrm{W}+\mathrm{ggg}$	$0.1119(17) \mathrm{D}-01$	$0.1564(22) \mathrm{D}-01$	40%
$\mathrm{ud} \rightarrow \mathrm{W}+\mathrm{gggg}$	$0.1339(36) \mathrm{D}-02$	$0.2838(71) \mathrm{D}-02$	120%

Results were calculated by HELAC

Do we need subleading color?

Parton shower starts from the tree level exact matrix elements

$$
\begin{aligned}
\left|\mathcal{M}\left(\{p, f\}_{m}\right)\right|^{2}=N_{c}^{n} \sum_{\{c\}_{m}}\{ & \left\{\left|\left(\{p, f, c\}_{m}\right)\right|^{2}\right. \\
& \left.+\sum_{\left\{c^{\prime}\right\}_{m}} \frac{1}{N_{c}^{\sigma}} A\left(\{p, f, c\}_{m}\right) A\left(\left\{p, f, c^{\prime}\right\}_{m}\right)^{*}\right\}
\end{aligned}
$$

How to assign color in the shower when the evolution starts from the interference contributions? In classical shower there is no way. With a simple trick we can get the normalization right.

$$
\begin{aligned}
& \left|\mathcal{M}\left(\{p, f, c\}_{m}\right)\right|^{2}= \\
& \underbrace{\frac{\left|A\left(\{p, f, c\}_{m}\right)\right|^{2}}{\sum_{\{c\}_{m}}\left|A\left(\{p, f, c\}_{m}\right)\right|^{2}}\left|\mathcal{M}\left(\{p, f\}_{m}\right)\right|^{2}}_{\text {Probability of }\{c\}_{m}} \\
& \text { Note this is just the standard K-factor trick. }
\end{aligned}
$$

Do we need subleading color?

Some people are thinking about NLO level shower. I think it is too early but who knows they might be right. It is clear that there is no way to go higher order with leading color approximation.

$$
\alpha_{s} \approx \frac{1}{N_{c}^{2}} \approx 0.1
$$

There are two perturbative parameters. The formal expansion of the splitting operator is

$$
\mathcal{H}_{\mathrm{I}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \mathcal{H}_{\mathrm{I}}^{(0,0)}+\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{1}{N_{c}^{2}} \mathcal{H}_{\mathrm{I}}^{(0,1)}+\left(\frac{\alpha_{\mathrm{s}}}{2 \pi}\right)^{2} \mathcal{H}_{\mathrm{I}}^{(1,0)}+\cdots
$$

Furthermore we need two color indices to represent a partonic states (interference terms).

Note that \mathcal{H}_{I} is an operator and it is impossible to do this expansion in practice.

Yes, we need.

Density Operator

The physical cross section is

$$
\sigma[F]=\sum_{m} \int\left[d\{p, f\}_{m}\right] \operatorname{Tr}\{\underbrace{\rho\left(\{p, f\}_{m}\right)} F\left(\{p, f\}_{m}\right)\}
$$

density operator in color \otimes spin space
The density operator is

$$
\rho\left(\{p, f\}_{m}\right)=\left|\mathcal{M}\left(\{p, f\}_{m}\right)\right\rangle \frac{f_{a / A}\left(\eta_{\mathrm{a}}, \mu_{F}^{2}\right) f_{b / B}\left(\eta_{\mathrm{b}}, \mu_{F}^{2}\right)}{2 \eta_{\mathrm{a}} \eta_{\mathrm{b}} p_{A} \cdot p_{B}}\left\langle\mathcal{M}\left(\{p, f\}_{m}\right)\right|
$$

or expanding it on a color and spin basis

$$
\rho\left(\{p, f\}_{m}\right)=\sum_{s, c} \sum_{s^{\prime}, c^{\prime}}\left|\{s, c\}_{m}\right\rangle \rho\left(\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)\left\langle\left\{s^{\prime}, c^{\prime}\right\}_{m}\right|
$$

Statistical States

The set of functions $\rho\left(\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)$ forms a vector space.

Basis: $\left.\quad \mid\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)$

Completeness relation :

$$
\left.1=\sum_{m} \int\left[d\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right] \mid\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)\left(\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m} \mid\right.
$$

Inner product of the basis states:
$\left(\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m} \mid\left\{\tilde{p}, \tilde{f}, \tilde{s}^{\prime}, \tilde{c}^{\prime}, \tilde{s}, \tilde{c}\right\}_{\tilde{m}}\right)=\delta_{m, \tilde{m}} \delta\left(\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m} ;\left\{\tilde{p}, \tilde{f}, \tilde{s}^{\prime}, \tilde{c}^{\prime}, \tilde{s}, \tilde{c}\right\}_{\tilde{m}}\right)$

A physical state which is related to the density matrix:

$$
\left.\mid \rho)=\int\left[d\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right] \rho\left(\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right) \mid\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)
$$

Shower Evolution

Using the factorization properties of the QCD the approximated order by order calculation can be organized according to

$$
\mathcal{U}\left(t, t^{\prime}\right)=1+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau)\left[\mathcal{H}_{I}(\tau)-\mathcal{V}(\tau)\right]
$$

From the unitary condition:

$$
\left(1 \mid \mathcal{V}(t)=\left(1 \mid \mathcal{H}_{\mathrm{I}}(t)\right.\right.
$$

The shower form of the solution is

$$
\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{N}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau) \mathcal{H}_{I}(\tau) \mathcal{N}\left(\tau, t^{\prime}\right)
$$

and the no-splitting operator is

$$
\mathcal{N}\left(t, t^{\prime}\right)=\mathbb{T} \exp \left(-\int_{t^{\prime}}^{t} d \tau \mathcal{V}(\tau)\right)
$$

Full Spliting Operator

$\left(\left\{\hat{p}, \hat{f}, \hat{s}^{\prime}, \hat{c}^{\prime}, \hat{s}, \hat{c}\right\}_{m+1}\left|\mathcal{H}_{\mathbf{I}}(t)\right|\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)$

$$
\begin{gathered}
=\sum_{l \in\{\mathrm{a}, \mathrm{~b}, 1, \ldots, m\}}(m+1) \frac{n_{\mathrm{c}}(a) n_{\mathrm{c}}(b) \eta_{\mathrm{a}} \eta_{\mathrm{b}}}{n_{\mathrm{c}}(\hat{a}) n_{\mathrm{c}}(\hat{b}) \hat{\eta}_{\mathrm{a}} \hat{\eta}_{\mathrm{b}}} \frac{f_{\hat{a} / A}\left(\hat{\eta}_{\mathrm{a}}, \mu_{F}^{2}\right) f_{\hat{b} / B}\left(\hat{\eta}_{\mathrm{b}}, \mu_{F}^{2}\right)}{f_{a / A}\left(\eta_{\mathrm{a}}, \mu_{F}^{2}\right) f_{b / B}\left(\eta_{\mathrm{b}}, \mu_{F}^{2}\right)} \\
\times\left(\{\hat{p}, \hat{f}\}_{m+1}\left|\mathcal{P}_{l}\right|\{p, f\}_{m}\right) \delta\left(t-T_{l}\left(\left\{\hat{p}, \hat{f}, \hat{s}^{\prime}, \hat{c}^{\prime}, \hat{s}, \hat{c}\right\}_{m+1}\right)\right) \\
\times\left[\theta (\hat { f } _ { m + 1 } = \mathrm { g }) \sum _ { k \in \{ \mathrm { a } , \mathrm { b } , 1 , \ldots , m \} } ^ { k \neq l } \sum _ { m } \left\{\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}\left(l, k ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right)\right.\right. \\
\times\left[A_{l k}\left(\{\hat{p}\}_{m+1}\right)\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(l, k ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right. \\
+\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}\left(k, l ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right) \\
\\
\times\left[A_{l k}\left(\{\hat{p}\}_{m+1}\right)\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(k, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right. \\
\\
\left.\left.\quad-\frac{1}{2}\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(l, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right]\right\}
\end{gathered}
$$

$$
\left.+\theta\left(\hat{f}_{m+1} \neq \mathrm{g}\right)\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}\left(l, l ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right) \mathcal{W}\left(l, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right]
$$

Full Splitting Operator

$\left(\left\{\hat{p}, \hat{f}, \hat{S}^{\prime}, \hat{C}^{\prime}, \hat{S}, \hat{C}\right\} m+1\left|\mathcal{H}_{I}(t)\right|\left\{D, f, s^{\prime}, c^{\prime}, s, c\right\} m\right)$

$\left.+\theta\left(\hat{f}_{m+1} \neq \mathrm{g}\right)\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}\left(l, l ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right) \mathcal{W}\left(l, l ;\{\hat{\{ }, \hat{p}\}_{m+1}\right)\right]$

The idea is split the splitting operator "good" and "bad" part and expand the evolution operator in the "bad" splitting operator.

The inclusive splitting operators are

$$
\left(1 \mid \mathcal{V}^{(J)}(t)=\left(1 | \mathcal { H } _ { I } ^ { (J) } (t) \quad \text { and } \quad \left(1 \mid \mathcal{V}^{(S)}(t)=\left(1 \mid \mathcal{H}_{I}^{(S)}(t)\right.\right.\right.\right.
$$

Now the good part of the evolution operator is

$$
\mathcal{U}^{(J)}\left(t, t^{\prime}\right)=\mathcal{N}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}^{(J)}(t, \tau) \mathcal{H}_{I}^{(J)}(\tau) \mathcal{N}^{(J)}\left(\tau, t^{\prime}\right)
$$

The full evolution operator is given by

$$
\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{U}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau)\left[\mathcal{H}_{I}^{(S)}(\tau)-\mathcal{V}^{(S)}(\tau)\right] \mathcal{U}^{(J)}\left(\tau, t^{\prime}\right)
$$

Solution of the Evolution Equation

The idea is split the splitting operator "good" and "bad" part and expand the evolution operator in the "bad" splitting operator.

The $\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{U}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}^{(J)}(t, \tau)\left[\mathcal{H}_{I}^{(S)}(\tau)-\mathcal{V}^{(S)}(\tau)\right] \mathcal{U}^{(J)}\left(\tau, t^{\prime}\right)$

$$
\begin{aligned}
& +\int_{t^{\prime}}^{t} d \tau_{2} \int_{t^{\prime}}^{\tau_{2}} d \tau_{1} \mathcal{U}^{(J)}\left(t, \tau_{2}\right)\left[\mathcal{H}_{I}^{(S)}\left(\tau_{2}\right)-\mathcal{V}^{(S)}\left(\tau_{2}\right)\right] \\
& \quad \times \mathcal{U}^{(J)}\left(\tau_{2}, \tau_{1}\right)\left[\mathcal{H}_{I}^{(S)}\left(\tau_{2}\right)-\mathcal{V}^{(S)}\left(\tau_{1}\right)\right] \mathcal{U}^{(J)}\left(\tau_{1}, t^{\prime}\right)
\end{aligned}
$$

$$
+\cdots
$$

The full evolution operator is given by

$$
\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{U}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau)\left[\mathcal{H}_{I}^{(S)}(\tau)-\mathcal{V}^{(S)}(\tau)\right] \mathcal{U}^{(J)}\left(\tau, t^{\prime}\right)
$$

$$
\begin{aligned}
& \mathcal{H}_{I}(t)=\mathcal{H}_{I}^{(J)}(t)+{\underset{V}{I}}_{\mathcal{H}_{I}^{(S)}}(t) \\
& \text { Fully exponentiated } \\
& \text { Subtracted }
\end{aligned}
$$

Solution of the Evolution Equation

$$
\mathcal{U}\left(t, t^{\prime}\right)=\mathcal{U}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau)\left[\mathcal{H}_{I}^{(S)}(\tau)-\mathcal{V}^{(S)}(\tau)\right] \mathcal{U}^{(J)}\left(\tau, t^{\prime}\right)
$$

Jet Spliting Operator

We approximate the color operator using a projection

$$
\begin{gathered}
\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{G}\left(k, l ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right)=\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|t_{k}^{\dagger} \otimes t_{l}\right|\left\{c^{\prime}, c\right\}_{m}\right) \\
\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{C}(l, m+1) \mathcal{G}\left(k, l ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right)
\end{gathered}
$$

The projection keep the color connected part

$$
\left.\mathcal{C}(l, m+1) \mid\left\{c^{\prime}, c\right\}_{m+1}\right)= \begin{cases}\left.\mid\left\{c^{\prime}, c\right\}_{m+1}\right) & l \text { and } m+1 \text { color connected } \\ & \text { in }\left\{c^{\prime}\right\}_{m+1} \text { and in }\{c\}_{m+1} \\ 0 & \text { otherwise }\end{cases}
$$

The corresponding quantum level operator is

$$
\mathcal{C}(l, m+1)=C(l, m+1)^{\dagger} \otimes C(l, m+1)
$$

Jet Splitting Operator

We approximate the color operator using a projection

The corresponding quantum level operator is

$$
\mathcal{C}(l, m+1)=C(l, m+1)^{\dagger} \otimes C(l, m+1)
$$

Jet Splitting Operator

Now the jet splitting operator is

$$
\begin{aligned}
& \left(\left\{\hat{p}, \hat{f}, \hat{s}^{\prime}, \hat{c}^{\prime}, \hat{s}, \hat{c}\right\}_{m+1}\left|\mathcal{H}_{\mathrm{I}}^{(\mathrm{J})}(t)\right|\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right) \\
& =\sum_{l \in\{\mathrm{a}, \mathrm{~b}, 1, \ldots, m\}}(m+1) \frac{n_{\mathrm{c}}(a) n_{\mathrm{c}}(b) \eta_{\mathrm{a}} \eta_{\mathrm{b}}}{n_{\mathrm{c}}(\hat{a}) n_{\mathrm{c}}(\hat{b}) \hat{\eta}_{\mathrm{a}} \hat{\eta}_{\mathrm{b}}} \frac{f_{\hat{a} / A}\left(\hat{\eta}_{\mathrm{a}}, \mu_{F}^{2}\right) f_{\hat{b} / B}\left(\hat{\eta}_{\mathrm{b}}, \mu_{F}^{2}\right)}{f_{a / A}\left(\eta_{\mathrm{a}}, \mu_{F}^{2}\right) f_{b} / B\left(\eta_{\mathrm{b}}, \mu_{F}^{2}\right)} \\
& \times\left(\{\hat{p}, \hat{f}\}_{m+1}\left|\mathcal{P}_{l}\right|\{p, f\}_{m}\right) \delta\left(t-T_{l}\left(\left\{\hat{p}, \hat{f}, \hat{s}^{\prime}, \hat{c}^{\prime}, \hat{s}, \hat{c}\right\}_{m+1}\right)\right) \\
& \times\left[\theta\left(\hat{f}_{m+1}=\mathrm{g}\right) \sum_{\substack{k \in\{\mathrm{a}, \mathrm{~b}, 1, \ldots, m\} \\
k \neq l}}\right. \\
& \left\{\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{C}(l, m+1) \mathcal{G}\left(l, k ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right)\right. \\
& \times\left[A_{l k}\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(l, k ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right. \\
& \left.-\frac{1}{2}\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(l, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right] \\
& +\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{C}(l, m+1) \mathcal{G}\left(k, l ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right) \\
& \times\left[A_{l k}\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(k, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right. \\
& \left.\left.-\frac{1}{2}\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(l, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right]\right\} \\
& \left.+\theta\left(\hat{f}_{m+1} \neq \mathrm{g}\right) \mathcal{G}\left(l, l ;\{\hat{f}\}_{m+1}\right) \mathcal{W}\left(l, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right]
\end{aligned}
$$

- This operator can evolve interference contribution.
- Full collinear and soft+collinear contributions included.
- Wide angle pure soft contributions are not fully included. Omitted part is suppressed by $1 / N_{c}^{2}$. It is treated perturbatively.
- The corresponding inclusive splitting operator can be exponentiated easily.
- Leads to a quasi Markovian process.

Jet Splitting Operator

Now the jet splitting operator is

$$
\left(\left\{\hat{p}, \hat{f}, \hat{s}^{\prime}, \hat{c}^{\prime}, \hat{s}, \hat{c}\right\}_{m+1}\left|\mathcal{H}_{\mathrm{I}}^{(\mathrm{J})}(t)\right|\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)
$$

- This operator can evolve

$$
\begin{aligned}
& \left.\left.={ }_{l \in\{ } \mathcal{N}^{(\mathrm{J})}\left(t, t^{\prime}\right) \mid p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)=\exp \left\{-\int_{t^{\prime}}^{t} d \tau\left[\lambda_{1}\left(\{p, f, c\}_{m}\right)+\lambda_{2}\left(\left\{p, f, c^{\prime}\right\}_{m}\right)\right]\right\} \text { plinear } \\
& \left.\left.\times \mid p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right) \\
& \begin{array}{l}
\theta\left(J_{m+1}=\mathrm{g}\right) \sum_{\substack{k \in\{a, b, 1, \ldots, m\} \\
k \neq l}}^{\sum} \\
\left\{\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{C}(l, m+1) \mathcal{G}\left(l, k ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right)\right.
\end{array} \\
& \times\left[A_{l k}\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(l, k ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right. \\
& \left.-\frac{1}{2}\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(l, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right] \\
& +\left(\left\{\hat{c}^{\prime}, \hat{c}\right\}_{m+1}\left|\mathcal{C}(l, m+1) \mathcal{G}\left(k, l ;\{\hat{f}\}_{m+1}\right)\right|\left\{c^{\prime}, c\right\}_{m}\right) \\
& \times\left[A_{l k}\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(k, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right. \\
& \left.\left.-\frac{1}{2}\left(\left\{\hat{s}^{\prime}, \hat{s}\right\}_{m+1}\left|\mathcal{W}\left(l, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right|\left\{s^{\prime}, s\right\}_{m}\right)\right]\right\} \\
& \left.+\theta\left(\hat{f}_{m+1} \neq \mathrm{g}\right) \mathcal{G}\left(l, l ;\{\hat{f}\}_{m+1}\right) \mathcal{W}\left(l, l ;\{\hat{f}, \hat{p}\}_{m+1}\right)\right] \\
& \text { - Wide angle pure soft } \\
& \text { contributions are not fully } \\
& \text { included. Omitted part is } \\
& \text { suppressed by } 1 / N_{c}^{2} \text {. It is } \\
& \text { treated perturbatively. } \\
& \text { - The corresponding inclusive } \\
& \text { splitting operator can be } \\
& \text { exponentiated easily. } \\
& \text { - Leads to a quasi Markovian } \\
& \text { process. }
\end{aligned}
$$

Leading Color Approximation

Recalling the evolution equation of the "jet" evolution operator

$$
\mathcal{U}^{(J)}\left(t, t^{\prime}\right)=\mathcal{N}^{(J)}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}^{(J)}(t, \tau) \mathcal{H}_{I}^{(J)}(\tau) \mathcal{N}^{(J)}\left(\tau, t^{\prime}\right)
$$

and from this the evolution equation of the leading color approximation can be given by another projection

$$
\mathcal{U}^{(L C)}\left(t, t^{\prime}\right)=\mathcal{N}^{(J)}\left(t, t^{\prime}\right) \mathcal{P}_{D}+\int_{t^{\prime}}^{t} d \tau \mathcal{U}^{(L C)}(t, \tau) \mathcal{H}_{I}^{(J)}(\tau) \mathcal{N}^{(J)}\left(\tau, t^{\prime}\right) \mathcal{P}_{D}
$$

where the projection \mathcal{P}_{D} keeps the color diagonal contributions only

$$
\left.\mathcal{P}_{D} \mid\left\{c^{\prime}, c\right\}_{m}\right)= \begin{cases}\left.\mid\left\{c^{\prime}, c\right\}_{m}\right) & \text { if }\{c\}_{m}=\left\{c^{\prime}\right\}_{m} \\ 0 & \text { otherwise }\end{cases}
$$

Conclusions

- We have a well define formalism to describe parton shower algorithms. Note we have equation!
- The formalism itself help us to have better understanding of already know effects and approximations (color coherence, leading color approximation,..)
- We have shown that it is possible to compute parton shower with full color efficiently and systematically using mainly standard Monte Carlo techniques.
- Implementation (coming soon)

