

QCD Monte-Carlo Models: High Transverse Momentum Jets

- Start with the perturbative 2-to-2 (or sometimes 2-to-3) parton-parton scattering and add initial and finalstate gluon radiation (in the leading log approximation or modified leading log approximation).
- The "underlying event" consists of the "beam-beam remnants" and from particles arising from soft or semi-soft multiple parton interactions (MPI).
- Of course the outgoing colored partons fragment into hadron "jet" and inevitably "underlying event" observables receive contributions from initial and final-state radiation.

QCD Monte-Carlo Models: High Transverse Momentum Jets

The "underlying event" consists of the "beam-beam remnants" and articles arising from soft or semi-soft multiple parton interactions (MPI).

 Of course the outgoing colored parton observables receive contributions from and having good

The "underlying event" is an unavoidable background to most collider observables and having good understand of it leads to more precise collider measurements!

Fourth HERA-LHC Workshop May 26-30, 2008

- Start with the perturbative Drell-Yan muon pair production and add initial-state gluon radiation (in the leading log approximation or modified leading log approximation).
- The "underlying event" consists of the "beam-beam remnants" and from particles arising from soft or semi-soft multiple parton interactions (MPI).
- Of course the outgoing colored partons fragment into hadron "jet" and inevitably "underlying event" observables receive contributions from initial and final-state radiation.

Look at correlations in the azimuthal angle $\Delta \phi$ relative to the leading charged particle jet ($|\eta| < 1$) or the leading calorimeter jet ($|\eta| < 2$).

⇒ Define $|\Delta \phi| < 60^{\circ}$ as "Toward", $60^{\circ} < |\Delta \phi| < 120^{\circ}$ as "Transverse ", and $|\Delta \phi| > 120^{\circ}$ as "Away". Each of the three regions have area $\Delta \eta \Delta \phi = 2 \times 120^{\circ} = 4\pi/3$.

Fourth HERA-LHC Workshop May 26-30, 2008

Look at correlations in the azimuthal angle $\Delta \phi$ relative to the leading charged particle jet ($|\eta| < 1$) or the leading calorimeter jet ($|\eta| < 2$).

⇒ Define $|\Delta \phi| < 60^{\circ}$ as "Toward", $60^{\circ} < |\Delta \phi| < 120^{\circ}$ as "Transverse ", and $|\Delta \phi| > 120^{\circ}$ as "Away". Each of the three regions have area $\Delta \eta \Delta \phi = 2 \times 120^{\circ} = 4\pi/3$.

Fourth HERA-LHC Workshop May 26-30, 2008

Event Topologies

 "Leading Jet" events correspond to the leading calorimeter jet (MidPoint R = 0.7) in the region |η| < 2 with no other conditions.

⇒ "Inclusive 2-Jet Back-to-Back" events are selected to have at least two jets with Jet#1 and Jet#2 nearly "backto-back" ($\Delta \phi_{12} > 150^{\circ}$) with almost equal transverse energies (P_T (jet#2)/ P_T (jet#1) > 0.8) with no other conditions.

* "Exclusive 2-Jet Back-to-Back" events are selected to have at least two jets with Jet#1 and Jet#2 nearly "backto-back" (Δφ₁₂ > 150°) with almost equal transverse energies (P_T(jet#2)/P_T(jet#1) > 0.8) and P_T(jet#3) < 15 GeV/c.

"Leading ChgJet" events correspond to the leading charged particle jet (R = 0.7) in the region |η| < 1 with no other conditions.

"Z-Boson" events are Drell-Yan events with 70 < M(lepton-pair) < 110 GeV with no other conditions.

Fourth HERA-LHC Workshop May 26-30, 2008

- Define the MAX and MIN "transverse" regions ("transMAX" and "transMIN") on an event-by-event basis with MAX (MIN) having the largest (smallest) density. Each of the two "transverse" regions have an area in η-φ space of 4π/6.
- The "transMIN" region is very sensitive to the "beam-beam remnant" and the soft multiple parton interaction components of the "underlying event".
- The difference, "transDIF" ("transMAX" minus "transMIN"), is very sensitive to the "hard scattering" component of the "underlying event" (*i.e.* hard initial and final-state radiation).

The overall "transverse" density is the average of the "transMAX" and "transMIN" densities.

Fourth HERA-LHC Workshop May 26-30, 2008

"Leading Jet" Observables at the Particle and Detector Level

	Observable	Particle Level	Detector Level		
	dNchg/dηdφ	Number of charged particles per unit η-φ (p _T > 0.5 GeV/c, η < 1)	Number of "good" charged tracks per unit η-φ (p _T > 0.5 GeV/c, η < 1)		
"	dPTsum/dηdφ	Scalar p _T sum of charged particles per unit η-φ (p _T > 0.5 GeV/c, η < 1)	Scalar p _T sum of "good" charged tracks per unit η-φ (p _T > 0.5 GeV/c, η < 1)		
	<p_7></p_7>	Average p _T of charged particles (p _T > 0.5 GeV/c, η < 1)	Average p _T of "good" charged tracks (p _T > 0.5 GeV/c, η < 1)		
	PTmax	Maximum p _T charged particle (p _T > 0.5 GeV/c, η < 1) Require Nchg ≥ 1	Maximum p _T "good" charged tracks (p _T > 0.5 GeV/c, η < 1) Require Nchg ≥ 1		
	dETsum/dŋdø	Scalar E _T sum of all particles per unit η-φ (all p _T , η < 1)	Scalar E _T sum of all calorimeter towers per unit η-φ (E _T > 0.1 GeV, η < 1)		
	$PT_{sum/ETsum} \begin{cases} Scalar p_T sum of charged particles \\ (p_T > 0.5 GeV/c, \eta < 1) \\ divided by the scalar E_T sum of \\ all particles (all p_T, \eta < 1) \end{cases}$		$\begin{array}{l} \mbox{Scalar } p_{T} \mbox{ sum of "good" charged tracks} \\ (p_{T} > 0.5 \mbox{ GeV/c}, \eta < 1) \\ \mbox{divided by the scalar } E_{T} \mbox{ sum of} \\ \mbox{calorimeter towers } (E_{T} > 0.1 \mbox{ GeV}, \eta < 1) \end{array}$		

Also include the leading jet mass (new)!

Fourth HERA-LHC Workshop May 26-30, 2008

Fourth HERA-LHC Workshop May 26-30, 2008

Fourth HERA-LHC Workshop May 26-30, 2008

All use LO α _s	PYT	HI	A 6.	2 T	unes 😪
with $\Lambda = 192$ MeV!	Parameter	Tune AW	Tune DW	Tune D6	
	PDF	CTEQ5L	CTEQ5L	CTEQ6L ~	
UE Parameters	MSTP(81)	1	1	1	
	MSTP(82)	4	4	4	Uses CTEQ6L
	PARP(82)	2.0 GeV	1.9 GeV	1.8 GeV	
	PARP(83)	0.5	0.5	0.5	
	PARP(84)	0.4	0.4	0.4	Tune A energy dependence!
	PARP(85)	0.9	1.0	1.0	
	PARP(86)	0.95	1.0	1.0	
ISR Parameter	PARP(89)	1.8 TeV	1.8 TeV	1.8 TeV	
	PARP(90)	0.25	0.25	0.25	ſ
	PARP(62)	1.25	1.25	1.25	
	PARP(64)	0.2	0.2	0.2	
	PARP(67)	4.0	2.5	2.5	
	MSTP(91)	1	1	1	
	PARP(91)	2.1	2.1	2.1	
	PARP(93)	15.0	15.0	15.0	
Intrinsic KT					

All use LO α_s	PYT	HI A	A 6 .	2 T	unes 😪
with $\Lambda = 192$ MeV!	Parameter	Tune DWT	Tune D6T	ATLAS	
	PDF	CTEQ5L	CTEQ6L	CTEQ5L	
	MSTP(81)	1	1	1	
UE Parameters	MSTP(82)	4	4	4	
	PARP(82)	1.9409 GeV	1.8387 GeV	1.8 GeV	
	PARP(83)	0.5	0.5	0.5	
	PARP(84)	0.4	0.4	0.5	ATLAS energy dependence!
	PARP(85)	1.0	1.0	0.33	
	PARP(86)	1.0	1.0	0.66	
ISR Parameter	PARP(89)	1.96 TeV	1.96 TeV	1.0 TeV	
	PARP(90)	0.16	0.16	0.16	ĺ
	PARP(62)	1.25	1.25	1.0	
	PARP(64)	0.2	0.2	1.0	
	PARP(67)	2.5	2.5	1.0	
	MSTP(91)	1	1	1	
	PARP(91)	2.1	2.1	1.0	
	PARP(93)	15.0	15.0	5.0	
Intrinsic KT					-

⇒ Data at 1.96 TeV on the overall number of charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) and the overall *scalar* p_T sum of charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) and the overall *scalar* ET sum of all particles ($|\eta| < 1$) for "leading jet" events as a function of the leading jet p_T . The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A at the particle level (*i.e.* generator level)..

Fourth HERA-LHC Workshop May 26-30, 2008

⇒ Data at 1.96 TeV on the overall number of charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) and the overall *scalar* p_T sum of charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) and the overall *scalar* ET sum of all particles ($|\eta| < 1$) for "leading jet" events as a function of the leading jet p_T . The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A at the particle level (*i.e.* generator level)..

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the overall number of charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for "leading jet" events as a function of the leading jet p_T . The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the overall *scalar* p_T sum of charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for "leading jet" events as a function of the leading jet p_T . The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Data at 1.96 TeV on the overall *scalar* ET sum of all particles ($|\eta| < 1$) for "leading jet" events as a function of the leading jet p_T . The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the density of charged particles, dN/dηdφ, with p_T > 0.5 GeV/c and |η| < 1 for "leading jet" events as a function of the leading jet p_T for the "toward", "away", and "transverse" regions. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

⇒ Data at 1.96 TeV on the charged particle *scalar* p_T sum density, dPT/dηdφ, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "toward", "away", and "transverse" regions. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the particle *scalar* E_T sum density, dET/d η d ϕ , for $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "toward", "away", and "transverse" regions. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the density of charged particles, dN/dηdφ, with p_T > 0.5 GeV/c and |η| < 1 for "Z-Boson" events as a function of the leading jet p_T for the "toward", "away", and "transverse" regions. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the charged particle scalar p_T sum density, dPT/dηdφ, with p_T > 0.5 GeV/c and |η| < 1 for "Z-Boson" events as a function of the leading jet p_T for the "toward", "away", and "transverse" regions. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW at the particle level (*i.e.* generator level).

Deepak Kar's Thesis

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "toward" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

• Data at 1.96 TeV on the charged *scalar* p_T sum density, dPT/d η d ϕ , with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "toward" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

⇒ Data at 1.96 TeV on the scalar E_T sum density, dET/dηdφ, with $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "toward" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

• Data at 1.96 TeV on the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "away" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the charged *scalar* p_T sum density, dPT/dηdφ, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "away" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the scalar E_T sum density, dET/dηdφ, with $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "away" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

• Data at 1.96 TeV on the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transverse" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

• Data at 1.96 TeV on the charged *scalar* p_T sum density, dPT/d η d ϕ , with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transverse" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the scalar E_T sum density, dET/dηdφ, with |η| < 1 for "leading jet" events as a function of the leading jet p_T for the "transverse" region. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

⇒ Data at 1.96 TeV on the charged particle average p_T , with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transverse" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the charged particle maximum p_T , with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transverse" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

⇒ Data at 1.96 TeV on the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "Z-Boson" and "Leading Jet" events as a function of the leading jet p_T or $P_T(Z)$ for the "toward", "away", and "transverse" regions. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "Z-Boson" and "Leading Jet" events as a function of the leading jet p_T or $P_T(Z)$ for the "toward", "away", and "transverse" regions. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

⇒ Data at 1.96 TeV on the charged *scalar* PTsum density, dPT/dηdφ, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "Z-Boson" and "Leading Jet" events as a function of the leading jet p_T or $P_T(Z)$ for the "toward", "away", and "transverse" regions. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

⇒ Data at 1.96 TeV on the charged *scalar* PTsum density, dPT/dηdφ, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "Z-Boson" and "Leading Jet" events as a function of the leading jet p_T or $P_T(Z)$ for the "toward", "away", and "transverse" regions. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Shows the Data - Theory for the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transverse" region for PYTHIA Tune A and HERWIG (without MPI).

Data at 1.96 TeV on the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for the "toward" region for "Z-Boson" and the "transverse" region for "Leading Jet" events as a function of the leading jet p_T or $P_T(Z)$. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (*i.e.* generator level). The Z-Boson data are also compared with PYTHIA Tune DW, the ATLAS tune, and HERWIG (without MPI)

Fourth HERA-LHC Workshop May 26-30, 2008

Shows the Data - Theory for the charged scalar p_T sum density, dPT/dηdφ, with p_T > 0.5 GeV/c and |η| < 1 for "leading jet" events as a function of the leading jet p_T for the "transverse" region for PYTHIA Tune A and HERWIG (without MPI).

→ Data at 1.96 TeV on the charged scalar PTsum density, dPT/dηdφ, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for the "toward" region for "Z-Boson" and the "transverse" region for "Leading Jet" events as a function of the leading jet p_T or $P_T(Z)$. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW and Tune A, respectively, at the particle level (*i.e.* generator level). The Z-Boson data are also compared with PYTHIA Tune DW, the ATLAS tune, and HERWIG (without MPI)

Fourth HERA-LHC Workshop May 26-30, 2008

Shows the Data - Theory for the *scalar* E_T sum density, dET/d η d ϕ , with $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transverse" region for PYTHIA Tune A and HERWIG (without MPI).

Shows the Data - Theory for the leading jet invariant mass for "leading jet" events as a function of the leading jet p_T for the "transverse" region for PYTHIA Tune A and HERWIG (without MPI).

Shows the Data - Theory for the leading jet invariant mass for "leading jet" events as a function of the leading jet p_T for the "transverse" region for PYTHIA Tune A and HERWIG (without MPI).

→ Data at 1.96 TeV on the charged fraction, PTsum/ETsum, for PTsum ($p_T > 0.5$ GeV/c, $|\eta| < 1$) and ETsum (all p_T , $|\eta| < 1$) for "leading jet" events as a function of the leading jet p_T for the "transverse" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the charged fraction, PTsum/ETsum, for PTsum ($p_T > 0.5$ GeV/c, $|\eta| < 1$) and ETsum (all p_T , $|\eta| < 1$) for "leading jet" events as a function of the leading jet p_T for the "transverse" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transMAX" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Data at 1.96 TeV on the density of charged particles, dN/dηdφ, with p_T > 0.5 GeV/c and |η| < 1 for "leading jet" events as a function of the leading jet p_T for the "transMIN" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the density of charged particles, dN/dηdφ, with p_T > 0.5 GeV/c and |η| < 1 for "leading jet" events as a function of the leading jet p_T for "transDIF" = "transMAX"-"transMIN. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the charged *scalar* p_T sum density, dPT/d η d ϕ , with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transMAX" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

b Data at 1.96 TeV on the charged *scalar* p_T sum density, dPT/d η d ϕ , with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transMIN" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the charged scalar p_T sum density, dPT/dηdφ, with p_T > 0.5 GeV/c and |η| < 1 for "leading jet" events as a function of the leading jet p_T for "transDIF" = "transMAX"-"transMIN. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

• Data at 1.96 TeV on the scalar E_T sum density, dET/d η d ϕ , with $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transMAX" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the scalar E_T sum density, dET/d η d ϕ , with $|\eta| < 1$ for "leading jet" events as a function of the leading jet p_T for the "transMIN" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the scalar E_T sum density, dET/dηdφ, with |η| < 1 for "leading jet" events as a function of the leading jet p_T for "transDIF" = "transMAX"-"transMIN. The data are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty) and are compared with PYTHIA Tune A and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "Z-Boson" events as a function of $P_T(Z)$ for the "toward" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the density of charged particles, $dN/d\eta d\phi$, with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "Z-Boson" events as a function of $P_T(Z)$ for the "toward" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

→ Data at 1.96 TeV on the average p_T of charged particles with $p_T > 0.5$ GeV/c and $|\eta| < 1$ for "Z-Boson" events as a function of $P_T(Z)$ for the "toward" region. The data are corrected to the particle level (*with errors that include both the statistical error and the systematic uncertainty*) and are compared with PYTHIA Tune AW and HERWIG (without MPI) at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

Shows the average transverse momentum of charged particles (|η|<1, p_T>0.5 GeV) versus the number of charged particles, Nchg, at the detector level for the CDF Run 2 Min-Bias events.

Data at 1.96 TeV on the average p_T of charged particles versus the number of charged particles (p_T > 0.4 GeV/c, |η| < 1) for "min-bias" collisions at CDF Run 2. The data are corrected to the particle level and are compared with PYTHIA Tune A at the particle level (*i.e.* generator level).

Fourth HERA-LHC Workshop May 26-30, 2008

- Data at 1.96 TeV on the average p_T of charged particles versus the number of charged particles (p_T > 0.4 GeV/c, |η| < 1) for "min-bias" collisions at CDF Run 2. The data are corrected to the particle leveland are compared with PYTHIA Tune A, Tune DW, and the ATLAS tune at the particle level (*i.e.* generator level).
- Particle level predictions for the average p_T of charged particles versus the number of charged particles (p_T > 0.5 GeV/c, |η| < 1, excluding the lepton-pair) for for Drell-Yan production (70 < M(pair) < 110 GeV) at CDF Run 2.</p>

Fourth HERA-LHC Workshop May 26-30, 2008

Data at 1.96 TeV on the average p_T of charged particles versus the number of charged particles (p_T > 0.4 GeV/c, |η| < 1) for "min-bias" collisions at CDF Run 2. The data are corrected to the particle leveland are compared with PYTHIA Tune A, Tune DW, and the ATLAS tune at the particle level (*i.e.* generator level).

Particle level predictions for the average p_T of charged particles versus the number of charged particles (p_T > 0.5 GeV/c, |η| < 1, excluding the lepton-pair) for for Drell-Yan production (70 < M(pair) < 110 GeV) at CDF Run 2.</p>

Fourth HERA-LHC Workshop May 26-30, 2008

Summary

- It is important to produce a lot of plots (*corrected to the particle level*) so that the theorists can tune and improve the QCD Monte-Carlo models. If they improve the "transverse" region they might miss-up the "toward" region etc.. We need to show the whole story!
- We are making good progress in understanding and modeling the "underlying event" in jet production and in Drell-Yan. Tune A and Tune AW describe the data very well, although not perfect. However, we do not yet have a perfect fit to all the features of the CDF "underlying event" data!
- Perhaps looking at <pT> versus Nchg in Drell-Yan with 70 < Mpair) < 110 GeV and P_T(pair) < 5 GeV is a good way to look at the color connections. Data coming soon!
- There are over 128 plots to get "blessed" and then to published. So far we have only looked at average quantities. We plan to also produce distributions and flow plots.
- I plan to construct a "CDF-QCD Data for Theory" WEBsite with the "blessed" plots together with tables of the data points and errors so that people can have access to the results.

Fourth HERA-LHC Workshop May 26-30, 2008

