

PDF uncertainties using Monte Carlo method

Voica A. Radescu/A. Glazov DESY

Introduction

- Method
- Gaussian distribution of errors
- Log-normal, uniform distribution of errors

1

+Summary

5/27/08

Introduction

The idea is to use a simple Monte Carlo technique to estimate PDF uncertainties which would provide:

- + An independent cross check of the standard errors estimation
- Flexibility in testing various assumptions for the uncertainties distribution:

- + A detector acceptance, \mathcal{L} luminosity
- + Systematic Uncertainties from A and \mathcal{L} are non-Gaussians (\mathcal{L} , A > 0)
 - + Log-Normal distribution
- + Some systematic uncertainties are "upper" limits:
 - + Uniform distribution

Method (1/2)

Notations:

- + Data point $\rightarrow \sigma_i$
- + Uncorrelated Uncertainty $woheadrightarrow \delta_i^{uncorr}$
- + Correlated systematic sources $\,lpha_{j}\,$ with their effect on data points $\,\delta^{corr}_{ij}\,$

Prepare a shifted data set:

- Shift the central value by taking into account the uncorr. and corr.errors:
 - + For Gauss Distribution of the errors:
 - + For only uncorrelated uncertainties: $\sigma_i = \sigma_i (1 + \delta_i^{uncorr} RAND_i)$
 - + For correlated uncertainties: generate shifts for $\alpha_j \rightarrow RAND_j$

$$\sigma_i = \sigma_i (1 + \delta_i^{uncorr} RAND_i + \sum_{i}^{N_{sys}} \delta_{ij}^{corr} RAND_j)$$

 $RAND_i$ is Gauss Random Number Generator with mean 0

Method (2/2)

Repeat the preparations for N times (here N \geq 100)
Perform the fit N times to extract PDFs

PDF uncertainties => from the RMS of the spread

This study is performed using:

- published H1-HERA I data of NC and CC e±p scattering cross sections [ref: Eur. Phys. J. C 30, 1-32 (2003)]
- Fit program H1 QCDNUM implementation at NLO:
 - MSbar renormalisation scheme, DGLAP evolution at NLO, massless quarks, polinomial form for PDF parametrisation a la H1PDF2000

1. Log-normal dist. for Lumi

Assume that all errors, apart from Lumi uncertainty follow Gauss
 Distribution for lumi uncertainty is assumed Log-normal here

+ 100 Yellow lines

Similar effect to pure gaussian case!

- **Red lines:** PDF uncertainties from RMS
- Blue lines: Hessian errors +

2. Uniform dist. for all errors

Assume that all errors follow Uniform Distribution

Similar effect to pure gaussian case!

- 100 Yellow lines
- Red lines: PDF uncertainties from RMS
- + Blue lines: Hessian errors

2. Uniform dist. for all errors

Assume that all errors follow Uniform Distribution

Similar effect to pure gaussian case!

- 100 Yellow lines
- Red lines: PDF uncertainties from RMS
- + Blue lines: Hessian errors

Summary

- A simple method to estimate PDF uncertainties built within QCD Fit framework:
 - Assuming only Gaussian distribution of the errors agrees well with the standard error estimation
- Allows to check non-Gaussian distributions for the experimental uncertainties:
 - Results are similar to Gaussian case when using log-normal and uniform distributions of the uncertainties
- Method could be extended for other variables (i.e. cross sections) for cross checks with standard error evaluation