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Geometric scaling from DGLAP evolution: theory

Geometric scaling, saturation and DGLAP evolution

Can geometric scaling be produced by DGLAP evolution?

A simple fixed coupling analysis

Introducing running coupling

G.S. can in fact be produced by DGLAP evolution

Phenomenology: is the HERA scaling a DGLAP–based scaling?

The geometric scaling kinematic window

Theoretical vs. phenomenological scaling

[Based on Stefano Forte & F.C., 0802.1878 (hep-ph)]
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Geometric scaling
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Geometric scaling

σ
(
x ,Q2

)
= F2/Q2 = σ(τ),

with τ = Q2xλ or

τ = Q2 exp
[
−λ
√

log(1/x)
]
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Geometric scaling II

The original G.S.

x < 0.01,
Q2 < 450 GeV2
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How can we explain geometric scaling?

Three possible scenarios:

1 Geometric scaling is a saturation–based phenomenon. What
we are seeing at HERA are saturation effects. If so, big
problems with our PDFs!

2 Geometric scaling is generated by saturation physics at some
low scale and then it is preserved by DGLAP evolution
[see e.g. Kwiecinski, Stasto, PRD 66:014013,2002]

3 Geometric scaling is generated by DGLAP evolution. There exists a
region where geometric scaling can be explained by pure DGLAP
evolution, without need of saturation
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A toy model without saturation: the LO DGLAP evolution
at small x

At small x the evolution is dominated by the large eigenvalue
of the a.d. matrix in the singlet sector

Consider only the singlet parton density

G (x , t) = x
[
g(x ,Q2) + kq ⊗ q(x ,Q2)

]
with as usual t ≡ log Q2/Q2

0

The LO DGLAP equation for G in Mellin space

d

dt
G (N, t) = αsγ0(N)G (N, t)
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GS from DGLAP evolution: the fixed coupling case

The DGLAP solution

G (ξ, t) =

∫
dN

2πi
G0(N) exp [αsγ0(N) t + N log(1/x)]

In the saddle point approximation

G ≈ eαsγ0(Ns ) t+Ns log(1/x), leading to the double log result

σ = exp
[
2
√
αst log(1/x)− (1 + αs)t

]
,

with αs ≡ Nc/π αs and t ≡ log Q2/Q2
0

Apparently no geometric scaling!
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A closer look at the saddle point approximation

The saddle condition reads

αs
d

dN
γ0(N)

∣∣∣∣
N=Ns

= −ξ
t
−→ Ns(t, ξ) = Ns(ξ/t),

where ξ ≡ log(1/x)

Hence

σ ∼ exp [αsγ0(Ns) t + Nsξ − t] = exp [f (t/ξ)ξ] ,

with

f (z) = (αsγ0(Ns)− 1) z + Ns .
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Geometric scaling from the saddle point approximation

Now expand f (z) around t/ξ = z0 = λ such that f (z0) = 0:

σ ∼ exp
[
f ′(λ)(z − z0)ξ + O

(
(z − z0)2

)]
As long as we can neglect higher terms in this expansion

σ ∼ exp

[
f ′(λ)

(
t

ξ
− λ
)
ξ

]
= exp

[
f ′(λ)(t − λξ)

]

Geometric scaling!

σ(t, ξ) = σ(t − λξ) = σ
(

Q2xλ
)
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A few comments

Analitically, this is the same argument proposed by Iancu et
al. in a BFKL context, [NPA 708:327-352,2002]

OK also for DGLAP thanks to perturbative duality

However: Iancu et al. impose the condition
σ(t = λξ) = const as a consequence of parton saturation.
At the DGLAP level, this condition is automatically fulfilled
with the LO anomalous dimension γ0 (and more in general
with any reasonable anomalous dimension)

Note that G0 does not enter in our equations. We have
implicitly assumed that the boundary condition is washed out
by the perturbative evolution
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Running coupling

What about running coupling?

Write the DGLAP solution in the ”dual” form

G (ξ, t) ≈
∫

dM

2πi
exp

Mt +

√
ξ
−2
∫M

M0
χ(αs ,M ′)dM ′

β0αs


where χ is the kernel dual to γ (see Guido Altarelli’s talk).

We can repeat the previous saddle point argument, with the only
replacement

ξ →
√
ξ

A new scaling variable!

log τ = t − λ
√
ξ → τ = Q2 exp

[
−λ
√

1/x
]
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Summarizing our results so far...

G.S. is an approximation to the full DGLAP solution!

Fixed coupling G.S. variable: log τ = t − λ log(1/x)

Running coupling G.S. variable: log τ = t − λ
√

log(1/x)

The third scenario is possible!

Geometric scaling can be generated by perturbative DGLAP
evolution
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How good our approximations are?

The arguments so involved several approximations:

Saddle point evaluation of the integral X

Truncated Taylor expansion

Fixed coupling analysis

To assess their accuracy:

1 Introduce the variable ζ = t + λξ

2 Search for λ = λ(t, ξ) such that

dσ

dζ
= 0

3 If λ(t, ξ) = const, then we have exact geometric scaling

Geometric scaling from DGLAP evolution Fabrizio Caola



An analytical argument: running coupling scaling

The derivative argument

Determine λ from the condition d
dζσ = 0. The leading term:

λ =
2γt log(t/t0)

(t + γ2)
√

log(t/t0)− γ
√
ξ

If (t + γ2)2 log(t/t0)� γ2ξ, then λ does not depend on x

As t increases λ becomes more and more a constant

This geometric scaling is a large Q2 – ”large” x phenomenon!
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A numerical argument, fixed coupling scaling

The HERA small x region →
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How to extract λ: the quality factor method

[Gelis et al., PLB 647:376-379,2007]

How can we extract the best value for λ?

Define Q(λ)−1 ≡
∑

i

[(
[σγ∗p

tot ]i+1 − [σγ∗p
tot ]i

)2
/(

(τi+1 − τi )
2 + ε

)]

From a gaussian fit:

λfix = 0.48± 0.02

λrun = 2.18± 0.22
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Scaling plot – fixed coupling scaling

The LO DGLAP form for σ in the HERA region,
x < 0.1, Q2 > 10 GeV2 and log τ = t − λξ, λ = 0.48
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Scaling plot – running coupling scaling

Same as before, but with log τ = t − λ
√
ξ, λ = 2.18
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The DGLAP solution exhibits geometric scaling!
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What we have seen so far

The LO DGLAP solution exhibits geometric scaling

Spectacular scaling behaviour both in the fixed and in the
running coupling variables

This scaling is generated by the DGLAP evolution

The scaling behaviour persists in a wide kinematic window

In particular GS persists at large Q2 and ”large” x −→

Different from saturation–based scaling!
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What about the real world?

Can we use our theoretical results to explain the
phenomenological geometric scaling observation?

Yes, as long as the DGLAP evolution is a good approximation to
the full QCD evolution. This is true if

x should be small, but not so small X

Q2 should be large enough to justify a f.o. calculation X

Boundary condition effects should be small enough X

The ”small” eigenvector of the a.d. matrix should be really
suppressed X

X: OK in the small x HERA region for Q2 > 10 GeV2
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DGLAP evolution at the quark–gluon coupled level

Only the largest eigenvector:

F2 =
γ

ρ
G

Only a trivial overall constant K must be fitted to the data

Both the contributions:

F2 =
γ

ρ
G + Ḡ

with

Ḡ = k exp

[
−16

nf

27β0
log(t/t0)

]
k must be fitted to the data. From a global fit we obtain k = 0.16.
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The small eigenvector and geometric scaling

The new term Ḡ violates G.S., hence we expect that the scaling
behaviour of the full solution deteriorates slightly.

Indeed, this is just the case:
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The effects of the small eigenvector

Ḡ deteriorates slightly geometric scaling, but we are forced to
consider it if we want to explain data!

Considering all data with Q2 > 10 GeV2

λfix = 0.32± 0.05

λrun = 1.66± 0.34

These are our final predictions for λ

Geometric scaling from DGLAP evolution Fabrizio Caola



Phenomenology I: The neural network approach

The neural neural network parametrization of F2

[NNPDF Collaboration, JHEP 0503(2005) 080]

More flexible analysis

Reliable results as long as we stay in the ”populated” region
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Phenomenology II: Our sample
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Geometric scaling in the original kinematic window

x < 0.01, Q2 < 450 GeV2

λ = λfix = 0.32 λexp = 0.32± 0.06
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Geometric scaling in an extended window

Is this scaling a DGLAP like scaling?

If so, it should be valid in a wider kinematic region, say x < 0.1
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Our final results:

Fixed–coupling scaling

λ = λfix = 0.32, x < 0.1, Q2 > 1 GeV2 for the theoretical curve
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The same with running–coupling scaling

λ = λrun = 1.66 λexp = 1.62± 0.25

The DGLAP evolution can explain GS in a wide kinematic
window!
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What about the small x region?

At small x

Perturbative
resummations!

By far more involved

At HERA: small x → small Q2, hence higher order and higher
twist effects.
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Resummations and geometric scaling

Resummation of a quadratic BFKL kernel at running coupling

First approximation: the a.d. has a simple pole located at
N0 ∼ 0.1− 0.3 leading to a fixed coupling GS with λ = N0

If we consider the leading Q2 dependence of the pole:
approximate running coupling GS with λ ∼ 1.2− 1.7
(Airy resummation)

Still compatible with the phenomenological observation!

This way a DGLAP–based GS could extend down to Q2 ≈ 5 GeV2
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Conclusions and outlook

So...

In a wide kinematic region, say Q2 > 10 GeV2 the geometric
scaling seen at HERA seems indeed a DGLAP–based scaling

5 GeV2 <∼ Q2 <∼ 10 GeV2: perturbative resummations may
provide an explanation for GS (Handle with care!)

For yet lower Q2 G.S. may provide genuine evidence for
parton saturation

How can we improve these results?

Focus on the small Q2 region

Subasymptotic corrections in order to disentangle DGLAP and
saturation–based scaling
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Extras
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A note on the running coupling derivation

Consider again the DGLAP solution in the dual form

G (ξ, t) ≈
∫

dM

2πi
exp

Mt +

√
ξ
−2
∫M

M0
χ(αs ,M ′)dM ′

β0αs



The running coupling solution in the dual form is valid only if
the kernel χ is linear in αs

OK in the collinear approximation

OK if χ is a generic LO BFKL kernel

Not OK with a generic LO DGLAP kernel! Less general than
the fixed coupling case
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The toy model

Consider a LO DGLAP evolution with anomalous dimension γ
given by

γ(αs ,N) = αs
Nc

π

(
1

N
− 1

)

Simple pole at N = 0→ OK for not so small x (see e.g.
Guido Altarelli’s talk)

γ(αs , 1) = 0→ OK with momentum conservation

No saturation at all

Can be solved analytically
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Not so bad for a toy model!

1 2 3 4
N

-0.5

0.5

1.0

1.5 Toy anomalous dimension
LO anomalous dimension

Quite accurate in a wide kinematic region
(say x <∼ 0.1, Q2 >∼ 10 GeV2)
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The toy model and resummations

[Altarelli, Ball, Forte, NPB 742:1-40,2006.]

OK down to x ∼ 10−4
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LO DGLAP evolution: a comparison with data

Only one eigenvector

QCD prediction: F2 ≈ f (t, log(1/x)) exp
[
2γ
√

log t log(1/x)
]

Define F res
2 ≡ log(F2/f ) and plot the experimental F res

2

γfit = 2.22± 0.004
γth = 2.4 (nf = 4)
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Both eigenvectors

This time F res
2 ≡ log

[
(F2 − Ḡ )/f

]
.

γfit = 2.42± 0.004
γth = 2.4 (nf = 4)

Good agreement theory/phenomenology

Up to our level of accuracy, the (improved) toy model is in good
agreement with data
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The quality factor: Comparison with data

λ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

)λ
Q

(

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
DAS prediction

Improved DAS prediction

Data

DAS prediction

Improved DAS prediction

Data

DAS prediction

Improved DAS prediction

Data

DAS prediction

Improved DAS prediction

Data

DAS prediction

Improved DAS prediction

Data

DAS prediction

Improved DAS prediction

Data

DAS prediction

Improved DAS prediction

Data

DAS prediction

Improved DAS prediction

Data

Geometric scaling from DGLAP evolution Fabrizio Caola



GS and resummations: the Airy case

Consider a quadratic BFKL kernel

χ(αs ,M) = αs

[
c + k/2 (M −M0)2

]
then the r.c. resummed anomalous dimension reads

γA =
3β0N2

0αs(t)

4πβ0 + 8πcαs(t)

1

N − N0
+ O

[
(N − N0)0

]
Leading behaviour of the solution

M−1 [exp(A/(N − N0)] ≈ exp
[
N0ξ + 2

√
Aξ
]

Approximate GS (modulo logarithmic deviations)

σ ≈ exp(−t + N0ξ)
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Taking into accout the (leading) Q2 dependence of N0

N0 :

(
2β0N0

4πk

)1/3 4π

β0

[
1

αs(t)
− c

N0

]
= z0,

with z0 = −2.338 the first zero of the Airy Function. At large t:

N0(t) = cαs(t)

[
1 + z0

(
β2

0

32π2

k

c

)1/3

αs(t)2/3 + ...

]

Search for the ”geometric line” N0(ts)ξ − ts = 0:

ts(ξ) =
√

4πc/β0

√
ξ + O

(
ξ1/6

)
R.c. geometric scaling with λ =

√
4πc/β0
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