

Beauty photoproduction at ZEUS

HERA and the LHC workshop

4th workshop on the implications of HERA on the LHC

Introduction

- Beauty quarks are predominantly produced at HERA by Boson-Gluon fusion
- Why measure beauty photoproduction at HERA?
 - Test of QCD due to large beauty mass
 - Important to understand backgrounds for LHC measurements
- In this talk I will present 3 ZEUS measurements:
 - Semileptonic decay into muons HERA II
 - Semileptonic decay into electrons HERA I (final)
 - Dimuon analysis HERA I (final)

HERA-LHC workshop 2008

Semi-leptonic decay channels

- Signature of lepton and two jets
- Semi-leptonic decay allows 2 complimentary methods of b-quark measurement
 - Muon provides clean signature
 - Electron allows measurements to lower p_{τ} of the lepton

- Massive approach
- Heavy quarks have mass and are not part of structure functions
- c and b are produced perturbatively in the hard interaction
- Appropriate for $p_T^2 \sim M_b^2$, if $p_T^2 \gg M_b^2$ then large $ln(p_T^2/M_b^2)$ appendix
- Program used in photoproduction is FMNR (Frixione et al.)

 $\mu^{2} = \mu_{0}^{2} = (p_{T}^{b})^{2} + (m_{b}^{b})^{2} \qquad 0.5 \ \mu_{0} < \mu < 2\mu_{0}$ $m_{b}^{} = 4.75 \text{GeV} \qquad 4.5 \text{GeV} < m_{b}^{} < 5 \text{GeV}$ Proton PDF: CTEQ5M, Photon PDF GRV-G HO

Sarah Boutle

Muon tag analysis - finding beauty quarks

- Use two variables to discriminate b from lighter quarks
- Properties of the b-quark:
 - Large mass m_{h}^{\sim} 5GeV \rightarrow Larger $p^{\text{el.}}$
 - Long lifetime \rightarrow Larger positive δ
- One of the first analyses to use the MicroVertex Detector
- This analysis uses ep data collected in 2005: ~124pb⁻¹
- $-2.5 < \eta^{\text{jet}} < 2.5, p_T^{\text{jet1,2}} > 7,6 \text{ GeV}$
- -1.6 < η^{μ} < 2.3, p_{T}^{μ} > 2.5 GeV
- The muon must be associated with a jet
- Photoproduction $Q^2 \sim 0 GeV^2$

Signed Impact Parameter **b**

HERA-LHC workshop 2008

Extracting the beauty (dijet + muon)

- Fraction of beauty events in the sample is extracted statistically
- Simultaneous 2-d fit of the data with the MC distributions

$$f = a_{b\bar{b}} f_{b\bar{b}} + a_{c\bar{c}} f_{c\bar{c}} + a_{lf} f_{lf}$$

HERA-LHC workshop 2008

Preliminary for EPS 2007

- Differential cross sections w.r.t muon $\textbf{p}_{_{T}}$ and η measured

- Compared to HERA I measurement made with $p_{\!\!\!\!\!\!\!\!\!\!}^{\rm rel.}$ fit only
- Also compared to NLO QCD prediction made with FMNR program found to be well described

Sarah Boutle

HERA-LHC workshop 2008

<u>ش</u>

Dijet + electron analysis

- This analysis uses e[±]p data collected in 96-00: ~120pb⁻¹
- -2.5 < η^{jet} < 2.5, $E_T^{\text{jet1,2}}$ > 7,6 GeV
- -1.5 < η^{e} < 1.5, p_{T}^{e} > 0.9 GeV
- b fraction extracted from a likelihood fit using variables sensitive to e-identification and semi-leptonic decays:

dE/dx the average energy loss per unit length of track $E_{_{EMC}}/E_{_{CAL}}$ fraction of energy in EM part of the calorimeter $E_{_{CAL}}/p_{_{track}}$ energy in the calorimeter divided by track momentum $p_{_{T}}^{_{rel.}}$ transverse momentum of the electron relative to the jet axis

 $\Delta \phi$ difference in azimuthal angle between the e⁻ and missing p_T vector

HERA-LHC workshop 2008

Electron tag analysis – fit method

• Hypothesis test for particle type i, decay j:

- beauty: 1.75 ± 0.16
 - charm: 1.28 ± 0.13

10⁵ • ZEUS 120 pb⁻¹ • JEUS 120 pb⁻¹ • Je⁻ • d⁻ •

HERA-LHC workshop 2008

Electron differential cross sections

 Charm cross sections have also been extracted using a likelihood ratio optimised for b-quark production
 ZEUS

HERA-LHC workshop 2008

Jet differential cross sections

ZEUS

Sarah Boutle

HERA-LHC workshop 2008

Dimuon analysis – method overview

- The data is organised into 4 subsamples
- Beauty is the only source of genuine like-sign muon pairs
- physics background: unlike sign only (from MC)
- fake muon background: like sign=unlike sign (from data)
- Determine the beauty contribution from difference between like and unlike sign muons (if the backgrounds are known)

Sarah Boutle

Dimuon analysis – method overview

- The data is organised into 4 subsamples
- Beauty is the only source of genuine like-sign muon pairs
- physics background: unlike sign only (from MC)
- fake muon background: like sign=unlike sign (from data)
- Determine the beauty contribution from difference between like and unlike sign muons (if the backgrounds are known)

Sarah Boutle

Dimuon analysis

- This analysis uses e[±]p data collected in 96-00: ~114pb⁻¹
- -2.2 < η^{μ} < 2.5, p_{T}^{μ} > 1.5 GeV and p_{T}^{μ} > 0.75 GeV for higher quality muons, no jet requirement

Backgrounds:

- Open charm (high mass, unlike sign)
 Normalisation from D*μ analysis
- Hidden charm (J/ψ, ψ')
 (low mass, unlike sign)

Isolation cut

- Bethe-Heitler (high mass, unlike sign)
 Isolation cut
- Light flavour all regions
 From data

HERA-LHC workshop 2008

- Massive approach
- Heavy quarks have mass and are not part of structure functions
- c and b are produced perturbatively in the hard interaction
- Appropriate for $p_T^2 \sim M_b^2$, if $p_T^2 \gg M_b^2$ then large $ln(p_T^2/M_b^2)$ appear
- Program used in photoproduction is FMNR (Frixione et al.)

 $\mu = \mu_0 / 2 = 1/2 \sqrt{((p_T^{b})^2 + (m_b^{})^2)} \qquad 0.25 \ \mu_0 < \mu < \mu_0$ $m_b = 4.75 \text{GeV} \qquad 4.5 \text{GeV} < m_b^{} < 5 \text{GeV}$ Proton PDF: CTEQ5M, Photon PDF GRV-G HO

- WW approximation $Q^2 = 25 GeV$ to include DIS contribution
- FMNR x PYTHIA interface for visible $\mu\mu$ cross sections

Sarah Boutle

Muon differential cross sections

- Both muons $p_T^{\mu} > 1.5 \text{ GeV}, -2.2 < \eta^{\mu} < 2.5$
- Good agreement in shape and reasonable agreement in normalisation

Beauty correlations

- $\Delta \phi = (\phi^{\mu 1} \phi^{\mu 2})$ between muons form different quarks (m^{µµ} > 3.25GeV)
- b-correlations are well described •

ZEUS

Sarah Boutle

D*+

Beauty summary plot

HERA

HERA-LHC workshop 2008

Conclusions

- Three complimentary analyses in beauty photoproduction at ZEUS have been presented:
- Semi-muonic tag in HERA II
 - Analysis uses MVD for the first time to extract beauty
 - p_{τ}^{rel} and impact parameter method gives results which agree with HERA I p_{τ}^{rel} only measurement
- Electron tag analysis with HERA I data
 - Beauty and charm cross sections have been measured using a likelihood ratio test
 - Agreement had been found with NLO
- Dimuon analysis at HERA I
 - Beauty extracted using muon double tag
 - bb correlations measured and are in agreement with NLO (within large errors)
- beauty production at HERA is in reasonable agreement with NLO
- theory is appropriate for cross section calculation at LHC

Sarah Boutle

HERA-LHC workshop 2008