Adapting COTS Technology for Big Physics Applications

Augusto Mandelli

Scientific Research and Big Physics Segment Manager, Europe

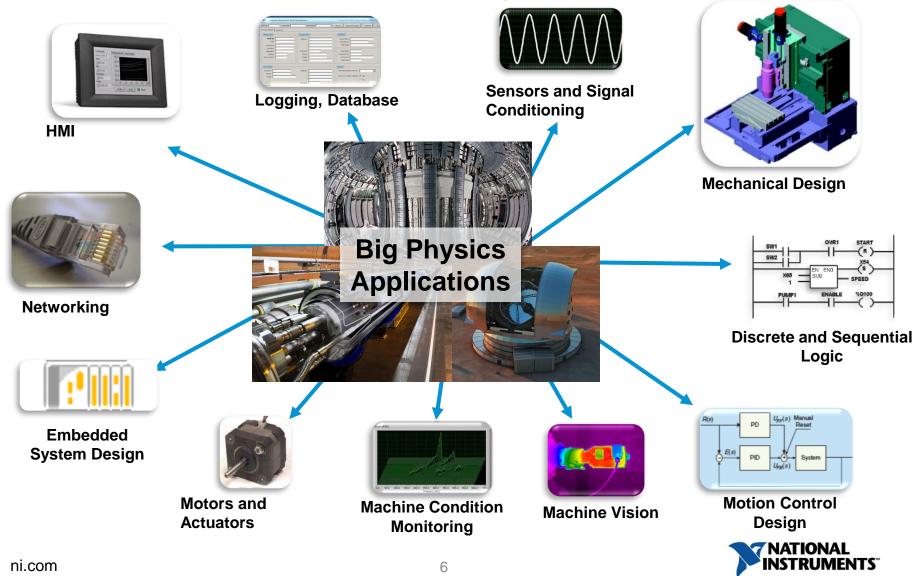
Agenda –

- Involvement in Big Physics
- Special Big Physics Application Requirements

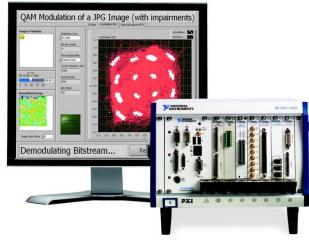
2

- Linux
- EPICS
- Radiation and Magnetic Field Testing
- RASM
- Lifecycle Management
- Global Services

Diversity of Applications – Multitude of Benefits



Worldwide Customers


BP Application Requirements Measurement, Control and Diagnostics

Comprehensive Product Portfolio: High Performance

More than 1,500 PXI Products from More than 70 Vendors

DAQ and Control:

Multifunction I/O

FPGA/Reconfigurable

Digital I/O

Analog Input/Output

Vision and Motion

Counter/Timers

Instruments:

Oscilloscopes

Digital Waveform Generator/Analyzers

Digital Multimeters

Signal Generators

Switching

RF Signal Generation and Analysis

Interfaces:

GPIB, USB, LAN

SCSI + Enet

Boundary Scan/JTAG

CAN + DeviceNet

RS232/RS485

VXI/VME

Comprehensive Product Portfolio: Low cost, robust and compact

Analog Input

- Up to 250 kS/s, simultaneous sampling
- 4, 8, 16, and 32-ch options
- Built-in signal condition for sensors
 - —Strain gages, accelerometers, thermocouples, RTDs
- Up to \pm 60 V, \pm 20 mA
- 12, 16 and 24-bit resolution
- Available ch-to-ch isolation

Analog Output

- Up to100 kS/s simultaneous updating
- Up to 16-ch per module
- ±10 V, ±20 mA
- Isolation

Digital I/O

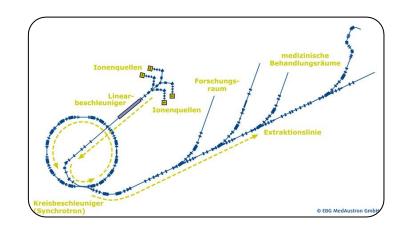
- —Up to 10 MHz timing
- —Counter/timer, PWM
- —8 and 32-channel options
- —5V/TTL, 12/24/48 V logic levels

Specialty

- -2-port CAN modules
- —Brushed DC servo motor drive

Third Party Modules

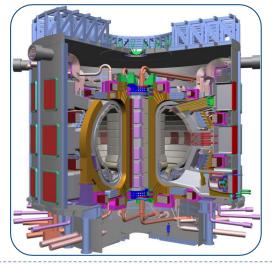
— LIN, Profibus, WLAN 802.11, MIL-1553, ARINC-429, GPS, and more



Beam Control System - MedAustron Ion Beam Therapy

- Custom Front End with COTS Real-Time Computing
 - 30k parameters through FPGAbased real-time computation
 - Fast, reliable power supply control for 300 magnets with high precision timing

Customized COTS to meet requirements and complete project on time


Fast Interlock, Control and Diagnostics - ITER

- ITER instrumentation and control requirements
 - 1 million I/O points
 - 20 GB/s archive rate
- COTS hardware with native Linux & EPIC drivers
 - Fast Control
 - Diagnostic
 - Fast Interlock for Machine Protection
 - Remote Handling
 - Quench Detection

- Special testing
 - Fast and Thermal neutrons
 - Gamma rays

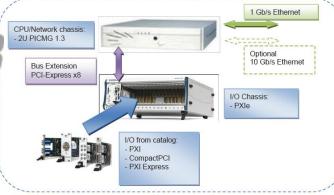
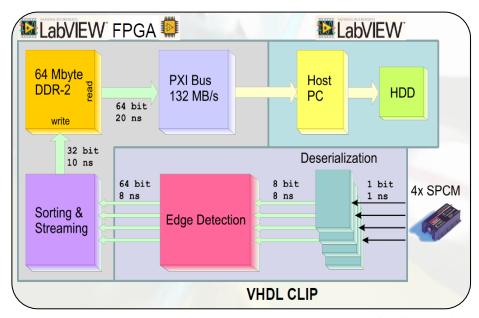


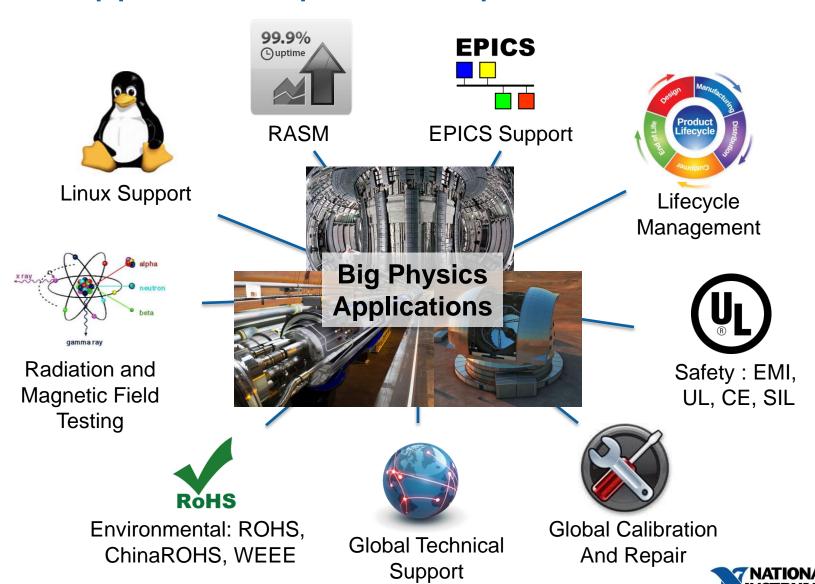
Figure 1 - A General Purpose Fast Controller

Developed custom drivers and performed special testing to meet needs

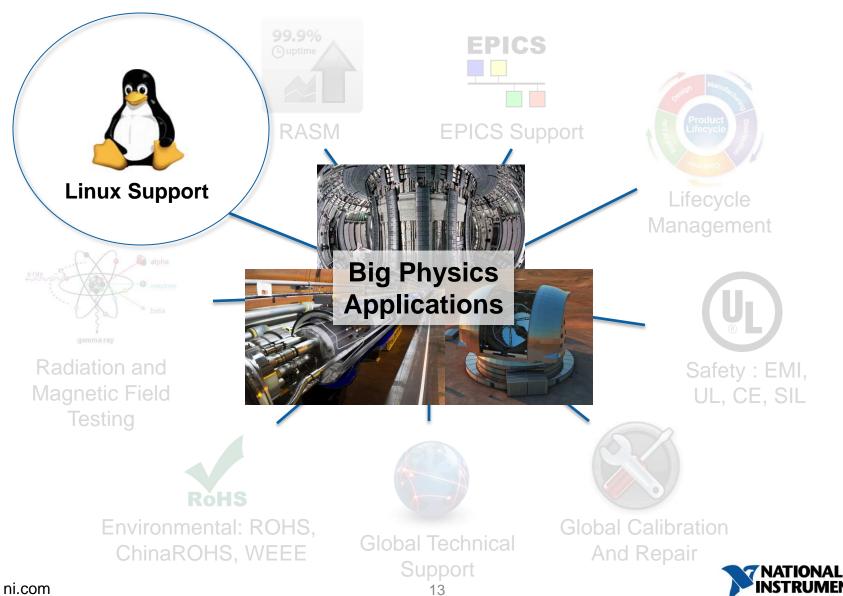


High Performance Computing with FPGA — TU Wien, Austria

- High performance Quantum Optics Simulation using the block Fixed Point data type
- Investigated lower limit computation times of complex valued functions executed on an FPGA


Algorithm verified with control of a laser cooled atom in a

magneto-optical trap



BP Application Special Requirements

Linux Support

NI MHDDK

- Measurement Hardware Driver Development Kit
- Register-level programming for Data Acquisition Devices
- Multiple OS support
- Driver developed entirely by the customer
- Source code only, very small footprint

Example Program

Register-Level API

Generic OS Interface

OS Specific Functions

ITER DAQ MHDDK Based Drivers

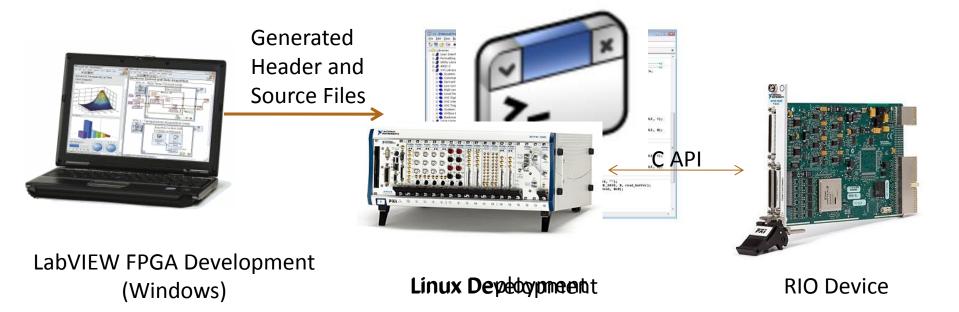
PXIe 6368: Multifunction Data Acquisition

PXI 6259: Multifunction Data Acquisition

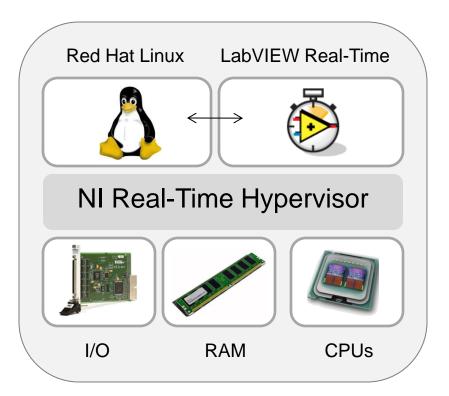
PXI 6528: HV Digital I/O

PXI 6682: Timing

PXI 6683: Timing



Deploying RIO Devices Under Linux



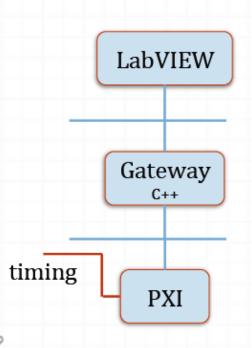
- 1. Develop LabVIEW FPGA VI, compile bitfile, and generate C API.
- 2. Develop and build C/C++ application with generated C API.
- 3. Deploy built application and bitfile to Linux target, and run.

NI Real-Time Hypervisor for Linux

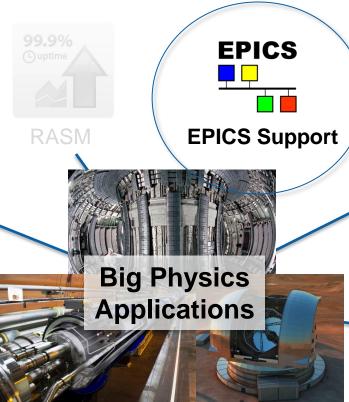
- Combine real-time processing with Linux applications
- Connect to any I/O devices supported by LabVIEW Real-Time or Linux
- Communicate between OSs with high throughput shared memory

ESS Ion Source

- Controlling and monitoring a ion source (ISHN) at ESS
- PXI and FPGA running LabVIEW interfacing with Linux operator interface through EPICS on real-time controller



Requirements for PXI integration


Requirement	Solution	Status
Long term collaboration	NI + CERN	OK
Support for spares, intervention, calibration	NI + CERN	OK
LabVIEW interf. to CMW	CERN	OK
LabVIEW 64-bit SLC	NI + CERN	2013
PXI to CMW	NINETV	2013
FMC carrier	INCAA + CERN	2013
Dual OS, Linux + LV-RT	NI Hypervisor	2014
NI-Scope + drivers+ GPIB	NI	2014
GMT timing card	CERN	2014
WR timing card	NI	2015

EPICS Support

Radiation and Magnetic Field Testing

Lifecycle Management

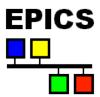
Safety: EMI, UL, CE, SIL

Environmental: ROHS, ChinaROHS, WEEE

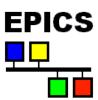
Global Technical Support

Global Calibration
And Repair

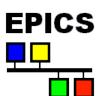
EPICS Integration



LabVIEW

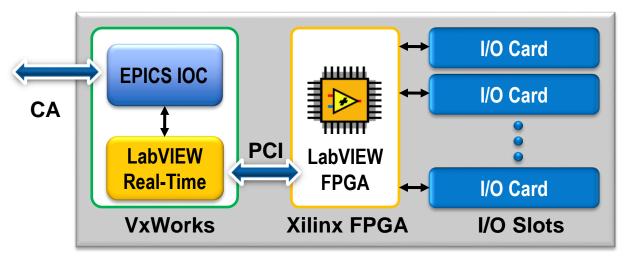

I/O Server

EPICS CA
Client or Server


LabVIEW RT on cRIO	Shared Memory	EPICS IOC on VxWorks
LabVIEW RT	Hypervisor	EPICS IOC
on PXI	Shared Memory	on Linux

PXI / cRIO 906x (No LabVIEW)

Linux Driver Device Support EPICS IOC on Linux

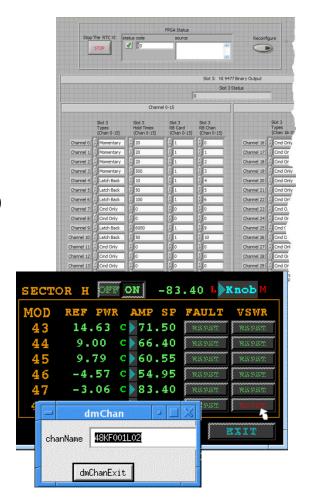


Embedding EPICS IOC on CompactRIO

- EPICS IOC and LabVIEW Real-Time running simultaneously
- Take advantage of FPGA platform with CompactRIO

CompactRIO Architecture

- 16 channels of high precision bipolar DC power
- Mainly used for corrector magnets in particle accelerators
- Running LabVIEW EPICS CA Server on an embedded real-time controller



Los Alamos LANSCE

- Migration to a cRIO with embedded EPICS
 - 12 binary outputs
 - 36 binary inputs
 - 12 analog inputs
 - 5 stepper motor channels
- Full IOC functionality allows access to all record fields and EPICS utilities
- Maximum flexibility for partitioning the problem
 - LabVIEW for beam diagnostic
 - EPICS for industrial control

IOC Server on PXI

Network Traffic

(Channel Access Protocol)

Channel Access Protocol Server

Publishes values from the database onto the network using Channel Access protocol.

Sequencer

(Finite State Machine)

Reads values from the database to drive state changes in the IOC control application.

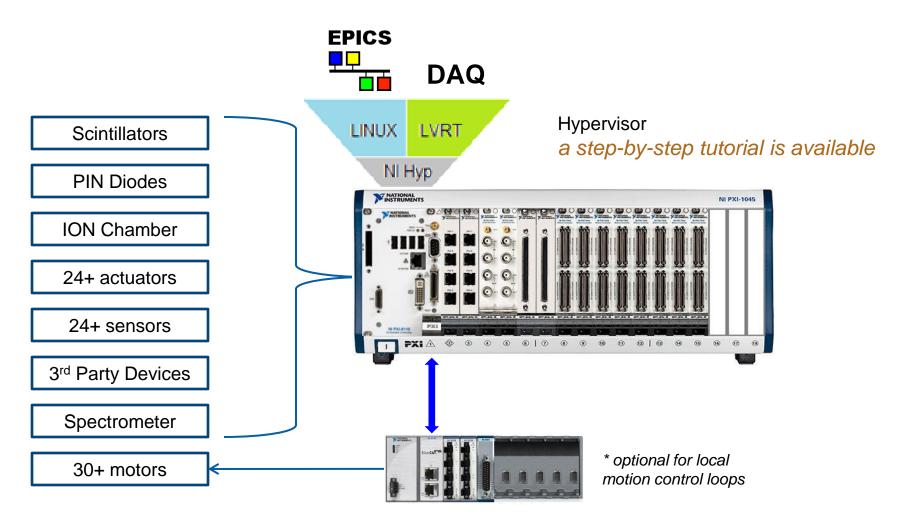
EPICS Database

Database Engine

Shared Memory

LabVIEW Application

- PXI controller runs Linux, hypervisor, and LV RT
- Implemented via hypervisor shared memory
- Interface to hardware via LabVIEW RT and FPGA (FlexRIO)

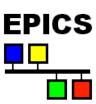

EPICS Device Support needs to be developed by

customer or integrator

Beam Line Proposed Automation

EPICS Integration Summary

LabVIEW

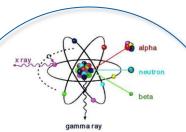

I/O Server

EPICS CA
Client or Server

LabVIEW RT on cRIO	Shared Memory	EPICS IOC on VxWorks
LabVIEW RT	Hypervisor	EPICS IOC
on PXI	Shared Memory	on Linux

PXI / cRIO 906x (No LabVIEW)

Linux Driver
Device Support


EPICS IOC on Linux

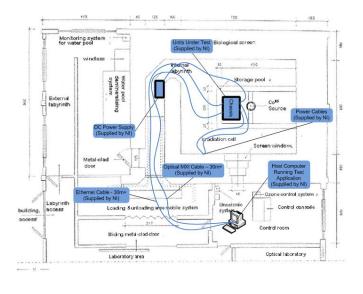
Radiation and Magnetic Field Testing

Radiation and Magnetic Field Testing

Lifecycle Management

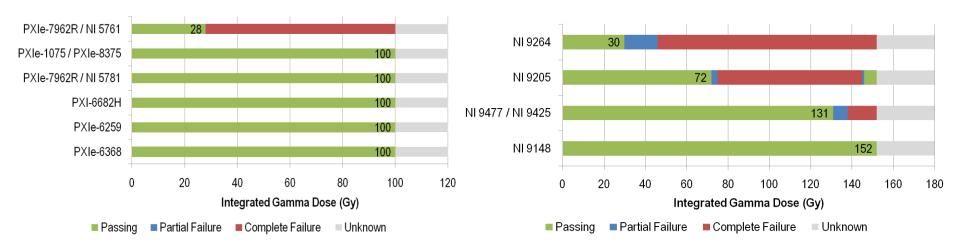
Safety: EMI, UL, CE, SIL

Environmental: ROHS, ChinaROHS, WEEE


Global Technical Support

Global Calibration
And Repair

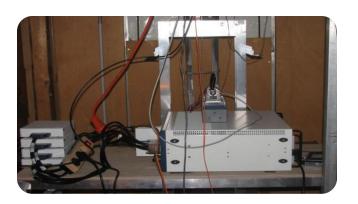
Calliope Gamma Research Lab at ENEA Casaccia



PXIe and cRIO Gamma Testing

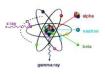
- Cumulative effects are evident in the gamma testing
- Most (1 PXI / 1cRIO) failed devices exceeded expected failure dose of 50Gy
- More than half of the devices exceeded the maximum expected failure dose of 100 Gy

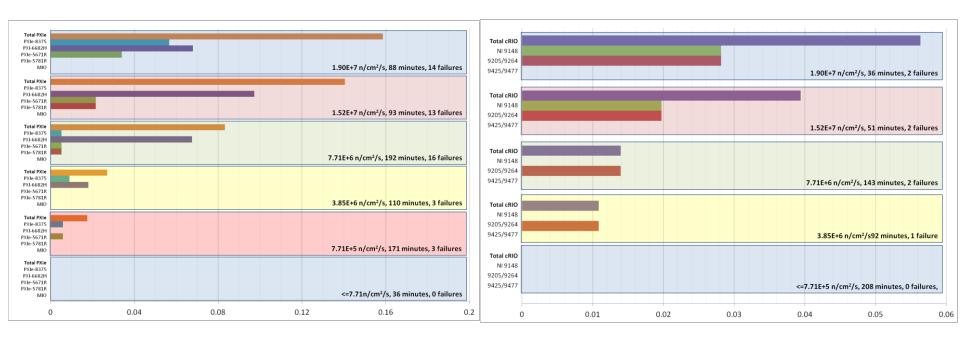
Fast and Thermal Neutron Testing


Frascati Neutron Generator, ENEA, Italy (**Fast**)

TRIGA Reactor, JSI, Slovenia (**Thermal**)

Fast Neutron Results (SEUs/Min)





- Single Event Upsets dominated the neutron results generally meeting ITER requirements
- Did not see permanent damage

Thermal Neutron Results (SEUs/Min)

- Where able to test, are almost 1 order of magnitude more flux compared to fast neutrons
- Failure rates were less than or equal to what was seen with fast neutron testing
- MIO hardware handled thermal much better than fast (0 failures)

Radiation Testing Conclusions

Gamma Testing

- Most devices exceeded expected failure dose of 50Gy
- Cumulative effects are evident in the gamma testing

Fast Neutron Testing

- Single Event Upsets dominated the neutron results generally meeting ITER requirements
- Did not see permanent damage

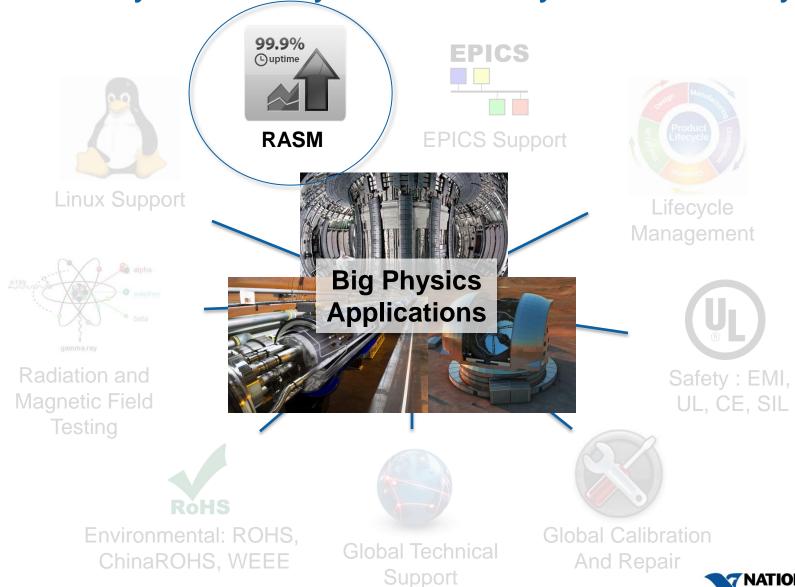
Thermal Neutron Testing

- Were able to test are almost 1 order of magnitude more flux compared to fast neutron
- Failure rates were less than or equal to what was seen with fast neutron testing
- MIO hardware handled thermal much better than fast (0 failures)

PXI Chassis

- Fans fail between 15mT 25 mT
- Investigation to find fans tolerant to higher field continues

NI 9148 (cRIO Ethernet Chassis)


- Chassis works well up to 60 mT
- Permanent HW damage at 230 mT

cRIO-9205 & cRIO-9263

- Works well up to 40 mT
- Data error between 40 and 50 mT
- Permanent HW failure after several minutes at 50 mT

Reliability, Availability, Serviceability, Maintainability

37

ni.com

RASM

Availability

The measure of how often a system is able to perform its intended function, even in the midst of failures.

Reliability

A system operates as intended, without failure or downtime, and satisfies the desired performance requirements.

RASM

Manageability

The extent to which a system can be controlled, supervised, and monitored.

Serviceability

Features and aspects of the system design contributing to ease of diagnosis and repair.

ni.com 38

System Reliability Lab (SRL)

Mission:

Assess the reliability of National Instruments productbased systems and drive product improvements

- Created to focus on system reliability for the:
 - Compact RIO and PXI / PXIe hardware platforms
 - LabVIEW software platform

SRL PXI/PXIe Testing

- 20 systems
 - 18 systems at room temperature
 - 2 systems in temperature chamber (cycles between 5°C and 5°C)
 - 5 systems running on dirty power
- 3 different hardware configurations
- 32 test applications
- 24/7 execution during missions

SRL cRIO Testing

Notation

Notation

Property of the control of the

- 40 systems
 - 32 systems at room temperature
 - 8 systems in temperature chamber (cycles between -40 and 70°C three times per day)
 - 8 systems running on dirty power
- 4 unique cRIO applications
- 24/7 execution during mission

SRL Temperature Chamber

- Cycle Temperature three times per day for months
- 2 to 8 Systems run for months at time in this environment
- PXI / PXIe: 5°C to 50°C
- cRIO: 40°C to 70°C

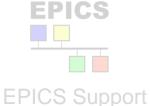
SRL Dirty Power Test Station

- Simulates a bad power grid
- 5 to 8 Systems run for months at time in this environment
- Vary frequency from 47 to 63 Hz
- Vary voltage level from 90 to 264 V

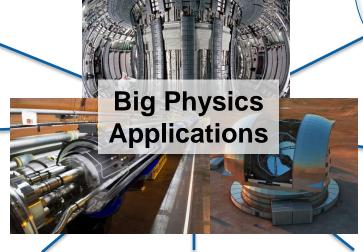
SRL MTBF Numbers

- PXIe 8130 controllers have over 40 years of run-time data and 1 failure = 40 yrs / 1 failure = 40 years per failure
- PXIe 1075 chassis have over 40 years of run-time and 2 failures = 40 yrs / 2 failures = 20 years per failure
- cRIO 9014 controllers have over 76 years of run-time data and 2 failures = 38 years per failure
- cRIO 9104 chassis have over 76 years of run-time and 0 failures >76 years per failure

CERN High Availability Chassis


- Redesigned to mechanically fit into a custom rack
- Independently powered, redundant hot swap power supplies and fans
- Remote Monitoring: Chassis Temperature, Fan Status, Power Supplies

Lifecycle Management



x ray neutron beta

Radiation and Magnetic Field Testing

Safety: EMI, UL, CE, SIL

Environmental: ROHS, ChinaROHS, WEEE

Global Technical Support

Global Calibration
And Repair

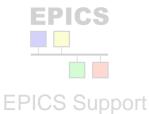
Active

Support Level

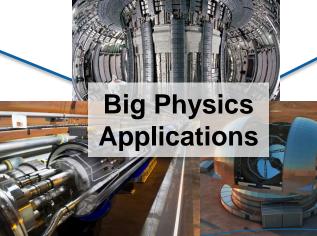
Next Generation Upgrade

	Mature	Mair	ntenance	
Last Time Buy Notice Last Time Buy Da				Obsolete
5-15 years —	· · · · · · · · · · · · · · · · · · ·	←1 year→	< 2-4+ years typical >	

	Active	Mature	Maintenance		Obsolete
Purchase new	Yes	Yes	No	No	No
Repair	Yes	Yes	Yes	Reasonable effort	No
Calibration	Yes	Yes	Yes	Reasonable effort	No
Service Agreements	Yes	Yes	Yes	Yes	Yes


(product line-dependent)

Global Services

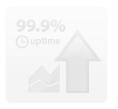


Management

Radiation and Magnetic Field Testing

Environmental: ROHS ChinaROHS, WEEE

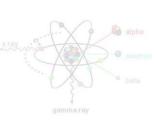
Global Technical
Support



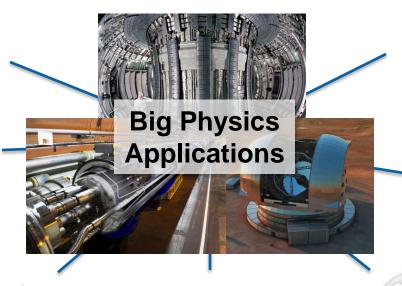
Global Calibration
And Repair

NATIONAL INSTRUMENTS

Safety Certifications



RASM



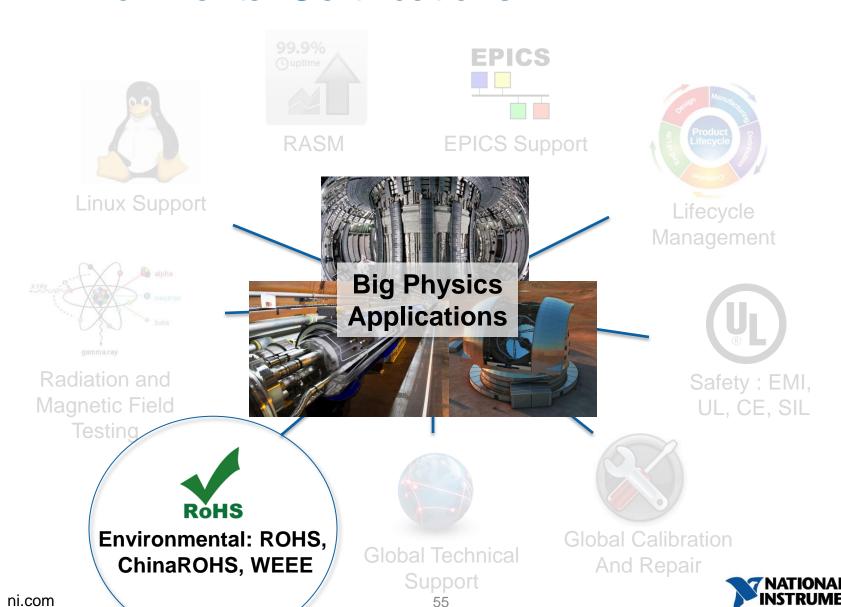
EPICS Support

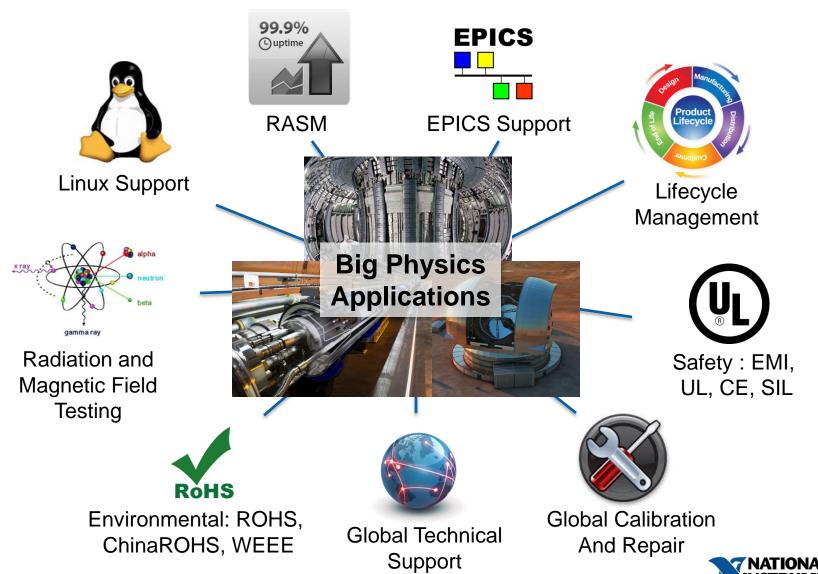
Radiation and Magnetic Field Testing

Lifecycle Management

Safety: EMI, UL, CE, SIL

Environmental: ROHS, ChinaROHS, WEEE


Global Technical Support 54


And Repair

Environmental Certifications

Summary of NI Offerings

56

ni.com

