Hermann Schmickler, CERN

AIME2013, December 2013

Bigger, brighter, more powerful...

Where Are We Going in the Field of High Energy Accelerators?

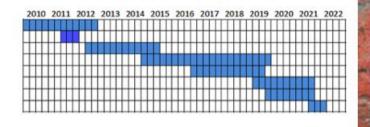
Outline:

- Overview
- A few examples of recent projects (neutrinos, flavour factories, antimatter, ions...)
- Future 'big boys': ILC/CLIC/LHC...
- What does this mean for controls?

European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire Slides from numerous sources, have tried to leave names on them acknowledging the source

Ter	ntative	sch	edule n	ew proje	ects		Color code R&D		a	oproved e	envisaged/p	roposed	
							R&D to CDR						
							Technical des Construction	ign to TDH					
							Operation						
Last update: 28/07/2010	Project	2010 2011	2012 2013 2014 2015	2016 2017 2018 2019	2020 2021 202		•	2026 202	2028 20	129 2030 2	2031 2032	2033	
	LHC to nominal	7TeV	Interc 14 TeV	linac4P SB 10^3	4								
Protons	LHC-HL				5.10^3	84 with	ı luminosit	ty level	ing				
	LHC-HE					Nev	v magnets				33	TeV	
	ILC		Now:										
Linear	CLIC		Some wor	ds about ne	utrino fa	aciliti	es.		V 3	TeV			
Colliders	PWFA						•						
	LWFA			flavour and hadron/e/ion facilities Will look at LHC luminosity upgrade plans, the possibility of ILC addressing Higgs,									
	Muon Collider												
Muons &	Neutrino Fact		•	5		U							
Neutrinos	Project X/FNAL			at future ene	rgy fron	ntier	option	S					
	LHeC		after LHC							Том	ards HE-	LHeC	
- hadrona	eRHIC/BNL							e	V	to 30	x 325 G	ieV	
e-hadrons	ELIC/JLAB		Would be	interesting to	o update	e thi	s slide				ELIC		
	ENC/GSI		regularly						ration HESR/EN				
	LHiC/CERN	2.8TeV/	ů j	י <mark>ף-אס, אז-אר, יי</mark>						Tow	ards HE-	LHeC	
• • • • •	RHIC II/BNL												
lons	NICA/DUBNA												
	FAIR/GSI												
Beauty	SuperKEKB/KEK				50/ab								
Factories	SuperB/LNF				75	i/ab							
J.P.Dela	ahaye	LHC :	= 1 fb ⁻¹ 66	fb ⁻¹ 336	fb ⁻¹ ICI	HEP 2	2010 (28	8/07/10)	3070	fb ⁻¹ 2		

Long-Baseline Neutrino Experiment

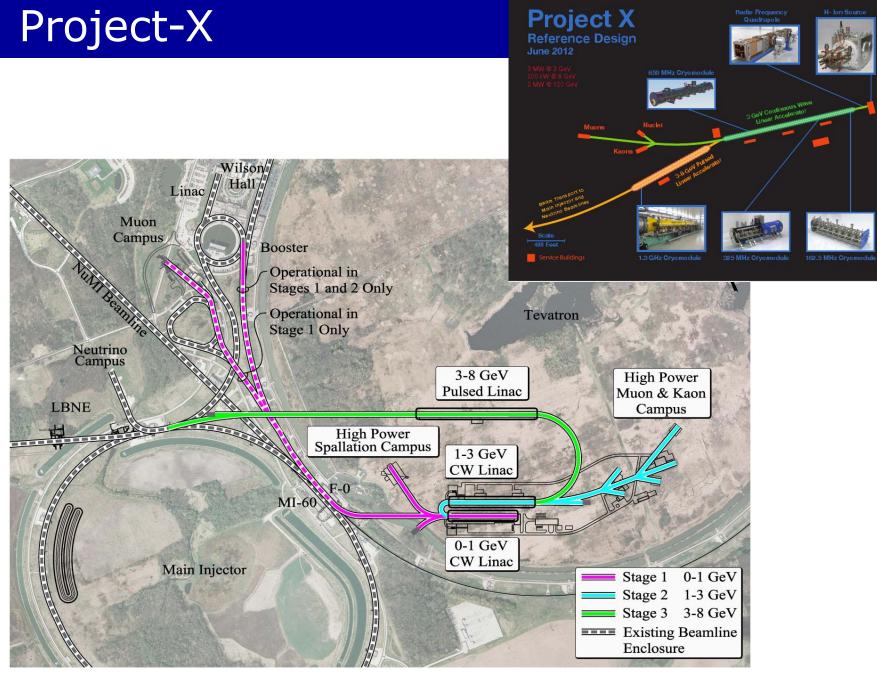


Wide-band, 3GeV ν_μ L=1300km

Fermi

Stage 1:>10kton Liq.Ar TPC, aiming to go to underground (1,600m) Stage 2:Additional 20-30kt

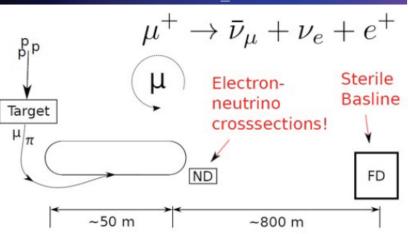
Conceptual Design Far Detector Technology Selection Detailed Design Civil Construction at Fermilab Civil Construction at SURF/Homestake Far Detector Installation Beamline Installation Operation Commissioning

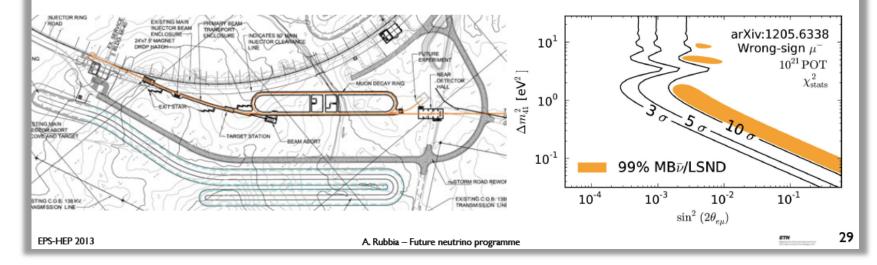

L300 km

Review driven schedule. Start operation in ~2022.

Beam and near complex

Stage 1: 700kW Main Injector beam Upgradable to >2.3MW w/ Project X

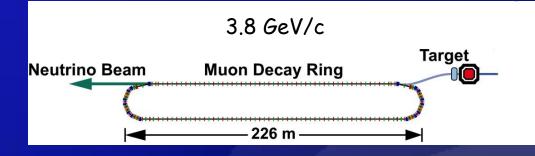



nu-STORM

- Neutrinos from Stored Muons (old idea but never realised!)
- Strongly revived interest in the combination of
 - a clear resolution of the short-baseline neutrino anomalies with >>5 or C.L.
 - the precise measurements of the electron neutrino cross-sections needed for LBL experiments,
 - and the synergy with neutrino-factory technology.
- FNAL PAC stage-1 approval in June 2013.
 To be reviewed by US HEPAP P5 in the future (*300M\$ project).

LOI submitted at CERN in June 2013, under review.

Well-understood neutrino source:


European Organization for Nuclear Research *Organisation européenne pour la recherche nucléaire*

Baseline

~ 100 kW Target Station (designed for 400kW)

- Assume 60-120 GeV proton
- Carbon target
 - > Inconel
- Horn collection after target
- Collection/transport channel
 - > Stochastic injection of π
- Decay ring
 - Large aperture FODO
 - > Also considering RFFAG
 - > Instrumentation
 - » BCTs, mag-Spec in arc, polarimeter

EPSHEP2013

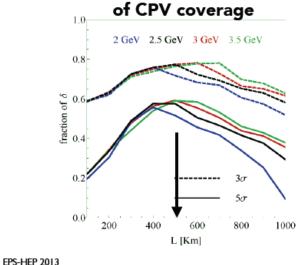
J-PARC

At J-PARC, a proton beam is accelerated by a series of accelerators, which consists of

- A 400 MeV (currently operating at 180 MeV) linear accelerator (LINAC)
- A 3 GeV rapid cycling synchrotron (RCS)
- A 50 GeV (currently 30 GeV) main ring (MR)

The applications of these beams include fundamental nuclear and particle physics, materials and life science, and nuclear technology.

Higher intensity plans exists, as well as detector upgrade plans ...



The EUROSB concept

- The European Spallation Source (ESS), which is being built in Lund, will have a 5 MW 2.5 GeV superconducting linac
- First beams 2019, Full operation 2025
- Idea: Double linac power to 10MW (+accumulator ring) to deliver in addition 5MW to a neutrino target to produce extremely intense beam with an average neutrino energy ≈300 MeV (Estimated additional cost for v beam: 400M€)
- A MEMPHYS 540kton Water Cerenkov detector at Garpenberg mine (L=540 km).

Preliminary estimate

- Unique opportunity to develop MW-class very low-energy neutrino beam and understand operational issues (highly challenging!)
- Low energy beam poorly focused and cross-sections very low, so sensitivity limited by statistics (at present level of understanding of systematic errors)
- Synergy with LAGUNA/LBNO for the far site (CERN-Garpenberg≈1700km and Protvino-Garpenberg≈1300km) and detector

A. Rubbia – Future neutrino programme

30

Flavour Factories

• Past:

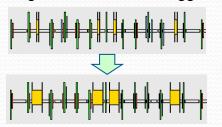
- PEP-II @ SLAC, USA
- KEKB @ KEK, Japan
- Present:
 - DAΦNE @ INFN-LNF, Italy
 - Vepp2000 @ BINP, Russia
 - BEPCII @ IHEP, China
- Future:
 - SuperKEKB @ KEK
- Proposals:
 - Tau-Charm @ BINP, INFN, IHEP, TAC (Turkey)

M. E. Biagini, INFN/LNF

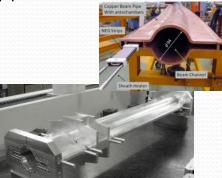
Upgrade to Belle II detector

e+ 3.6A

Colliding bunches


HER QCILE New superconducting final focusing magnets near the IP

e⁻ 2.6A


ECCEPTER CONTRACTOR

Belle II Superconducting Solenoid

Redesign the lattice to squeeze the emittance (replace short dipoles with longer ones, increase wiggler cycles)

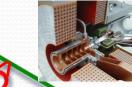
Replace beam pipes with TiN-coated beam pipes with antechambers

KEKB to SuperKEKB

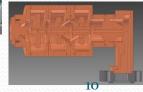
♦ Nano-Beam scheme extremely small β_y* low emittance ♦ Beam current double $L = \frac{g_{\pm}}{2er_e \acute{e}} \overset{R}{c}_1 + \frac{S_y^* \ddot{e}}{S_x^* \acute{e}} \frac{I_{\pm} X_{\pm y}}{b_y^*} \overset{R}{c}_{e} \frac{R_L}{R_y \acute{e}} \overset{O}{c}$

40 times higher luminosity 2.1x10³⁴ --> 8x10³⁵ cm⁻²s⁻¹

DR tunnel


@-

Reinforce RF systems for higher beam currents


Improve monitors and control system

Injector Linac upgrade

Upgrade positron capture section

Low emittance RF electron gun

K. AKAI, Progress in Super B-Factories, IPAC₁₃

Parameters of KEKB and SuperKEKB

noromotoro		KEKB(@	@record)	Super	units	
parameters	LER	HER	LER	HER		
Beam energy	Еb	3.5	8	4	7.007	GeV
Crossing angle (full)	φ	22	2	83	mrad	
# of Bunches	N	158	34	250		
Horizontal emittance	ε _x	18	24	3.2	4.6	nm
Emittance ratio	к	0.88	0.66	0.27	0.28	%
Beta functions at IP	β_x^*/β_y^*	1200	/5.9	32/0.27	25/0.30	mm
Max. beam currents	l _b	2.0	1.4	3.6	2.6	A
Beam-beam param.	ξy	0.129	0.090	0.0881	0.0807	
Bunch Length	σz	6.0	6.0	6.0	5.0	mm
Horizontal Beam Size	σ×*	150	150	10	11	um
Vertical Beam Size	σ y*	0.9	0.048	um		
Luminosity	L	2.1 x	10 ³⁴	8 x 1	cm ⁻² s ⁻¹	

K. AKAI, Progress in Super B-Factories, IPACI3

Commissioning Scenario

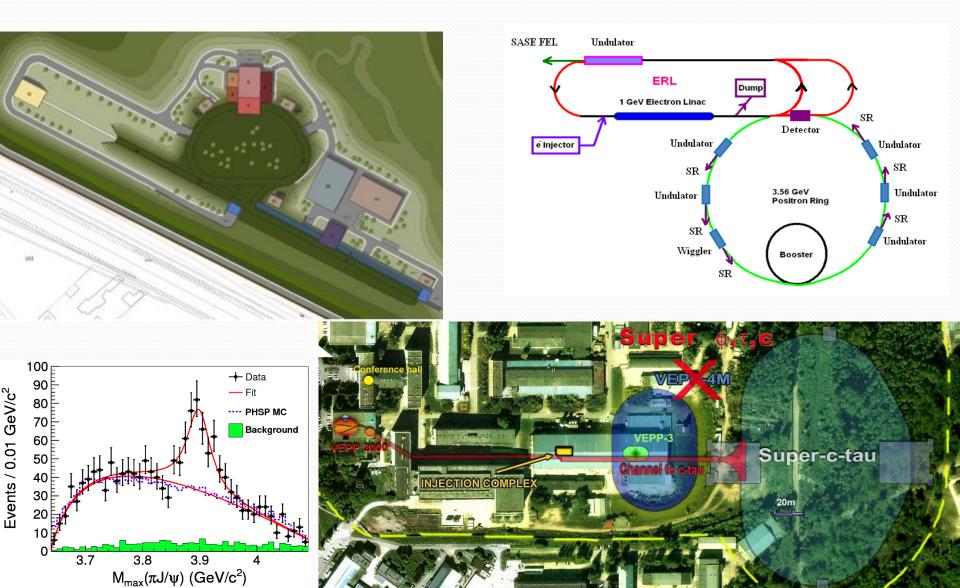
		-			1					1		1	1							-						1					_					
Racolir	Baseline				FY2015						FY2016																									
Daseili	IE									C	Y2015											CY2	2016									CY2	.017			
Scona	rio -	10	0 11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	6	7	8	9
Scenario 10 11 12 1			Ph	ase 1				Sumr	ner shu	utdown				Phase 2				Summ	er shu	tdown	h Phase 3					Summer shutdown										
Commissioning					No G		lo Sol	enoid									QCS	w/ Sol	enoid (v	n∕o VX	4.2								Physic	s Run						
Belle II solenoid	Roll In										In							osity t	-								ctor tu									
QCS	Installation/ o	dismant	lement		P	ha	se	1									Ρ	has	se i	2						P	has	se (3							
QCS	Cooling test				J	an.	. 2()15	_								~	4 m	non	th	s															\rightarrow
QCS	Field meas.							nth						field m	ieas.																					
IR magnet	Installation/ o	dismant	lement		~	5 11		ILII	13																											
Concrete shield	Installation/ o	dismant	lement																									Fir	st	tar	ge	et lu	um	ning	osi	ty
Cosmic-ray test												w/o \	VXD										w/ VX	D				1、	v 1	0 ³⁴		m-2	$2e^{-1}$	1		
Endcap•Endyoke	Installation					Ļ,																						1 /	` '	U			3			
ТОР	Installation						DP																													
CDC	Installation										CD	<u>C</u>																								
VXD	Installation											PXI	D/S	VD	rea	ady								ir	151	tall	ati	on								
Belle II Status											on th	ne bea	m line																							
[Phase	1]			N	Ιο	Q	CS	5, ľ	No	B	Bell	e																								
	Basic machine tuning. Low emittance tuning																																			

- Vacuum scrubbing (0.5 ~ 1.0 A, >1 month)
- DR commissioning start (~Apr.)

[Phase 2]

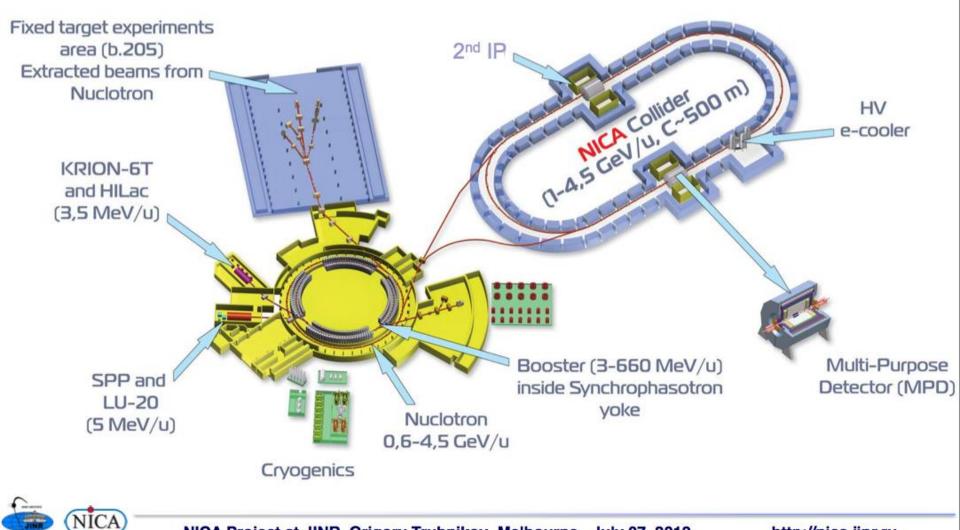
- With QCS, With Belle II (without Vertex Detector) Small x-y coupling tuning, Collision tuning
- **βy* will be gradually squeezed**
- **Background study**

With Full Belle II [Phase 3]

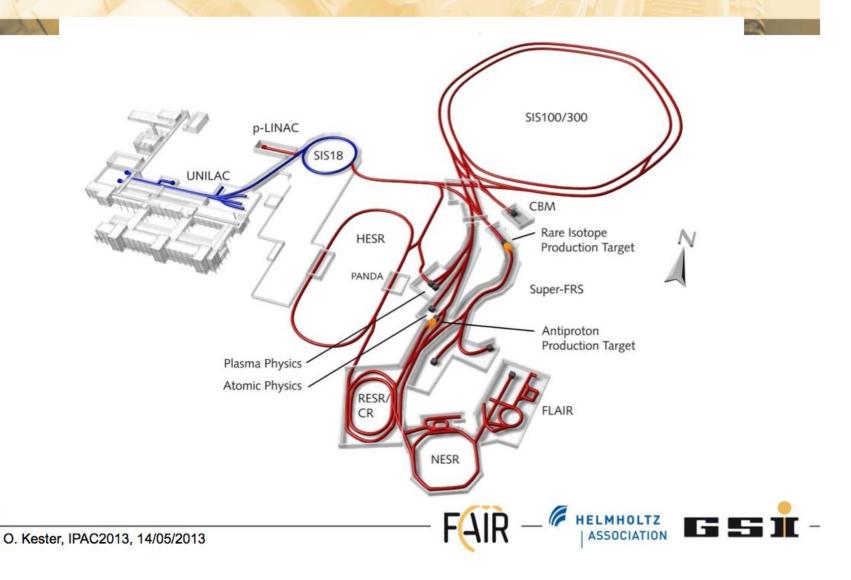

- Increase beam current with adding more RF
- **Increase luminosity**

Super τ/charm proposals

	Italian Tau/Charm	BINP Tau/Charm	IHEP Tau/Charm	Turkish Charm
	2 rings	2 rings	2 rings	Linac+rin g
Luminosity (cm ⁻² s ⁻¹)	1 X 10 ³⁵	1 X 10 ³⁵	1 X 10 ³⁵	1.4 X 10 ³⁵
Circumference (m)	340	360/800	990	250 (600?)
Beam energy (GeV)	$1 \rightarrow 2.3$	$0.5 \rightarrow 2$	3	1 + 3.56
Emittance H (nm)	5	3/10	10	16
Coupling (%)	0.25	0.5	0.5	0.3
IP β (x,y) (mm)	70, 0.6	200,0.6/20, 0.76	1000, 1	80, 5
bb V tune shift	o.64 → o.08	0.095 → 0.17	0.06	0.12
Crab waist	YES	YES	YES	NO
Beam current (A)	$1 \rightarrow 1.7$	$1.8 \rightarrow 1.7$	2.7	0.48 + 4.8
N. of bunches	530	418	540	125


M. E. Biagini, INFN/LNF

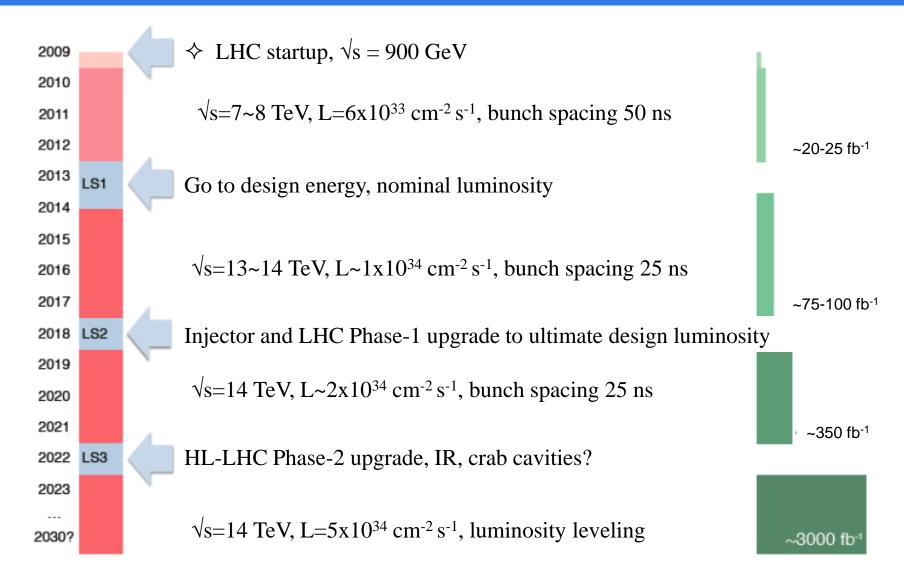
Example of possible future...


Superconducting accelerator complex NICA (Nuclotron based Ion Collider fAcility)

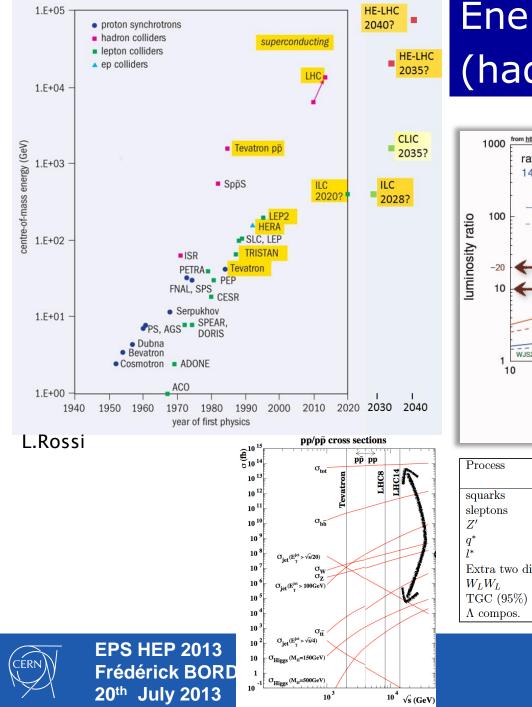
NICA Project at JINR, Grigory Trubnikov Melbourne, July 07, 2012

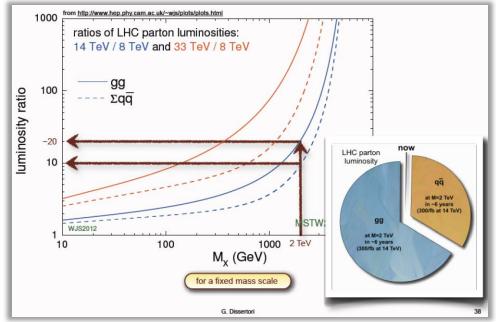
http://nica.jinr.ru

Facility for Antiproton and Ion Research - FAIR

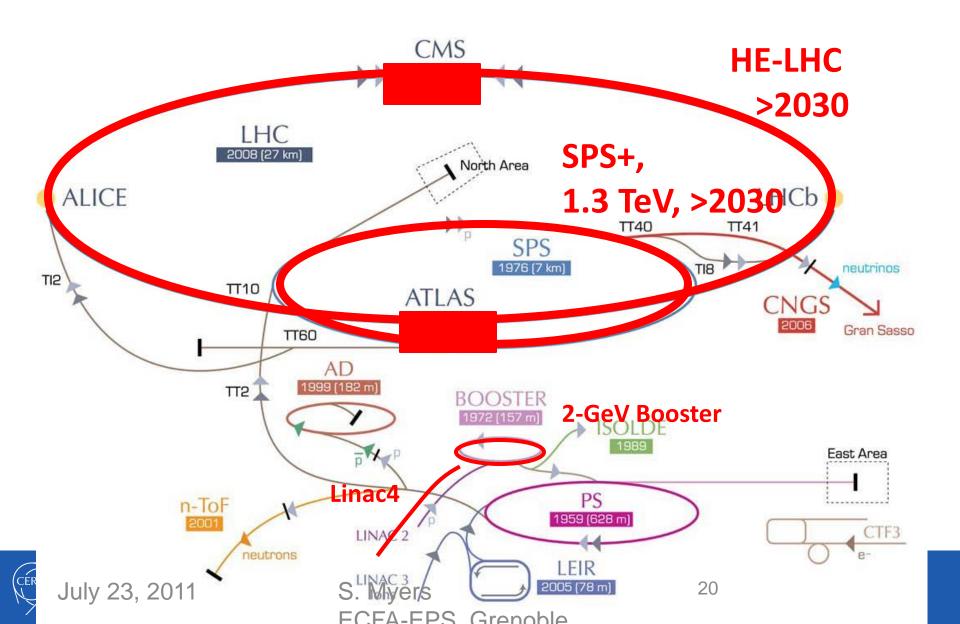

European Strategy Priorities

European Strategy priorities:


- LHC and LHC luminosity upgrades (until ~2030)
 - Higgs and Beyond the Standard Model physics in long term programme
- BSM does it show up at LHC at 14 TeV, 2015 onwards?
 - What are the best machines to access such physics directly post-LHC we don't know but we can prepare main options the next years towards next strategy update (~2018)
 - Two alternatives considered; higher energy hadrons (HE LHC or VHE LHC), or highest possible energy e+e- with CLIC
- ILC in Japan, a possibility for exploring the Higgs in detail, starting at 250 GeV
 - If implemented a comprehensive programme that can map out the Higgs sector in particular
- A European Neutrino program in a global context, high lighting Ic CERN MTP (= medium term plan) in June 2013:
 - Highest Priority:
- s full exploitation of LHC physics potential
 - High Priority items:
 design studies and R&D at energy frontier
 possible participation in the ILC Project
 development of neutrino program
 unique fixed target physics program


"Exploitation of the full potential of the LHC"

Energy frontier machines (hadrons or leptons)



Process	VLHC	CI	IC
	$200 { m TeV}$	$3 { m TeV}$	5 TeV
squarks	15	1.5	2.5
sleptons		1.5	2.5
Z'	30	20	30
q^*	70	3	5
$\overline{l^*}$		3	5
Extra two dimensions	65	20 - 33	30 - 55
$W_L W_L$	30σ	70σ	90σ
TGC (95%)	0.0003	0.00013	0.00008
Λ compos.	130	300	400

Need to look at physics models (hopefully guided by new LHC data), reach (E,Lum), costs, schedules – to

determine the way forward ¹⁹

HE-LHC – LHC modifications

80-100 km tunnel in Geneva area – VHE-LHC with possibility of e+-e- (TLEP) and p-e (VLHeC)

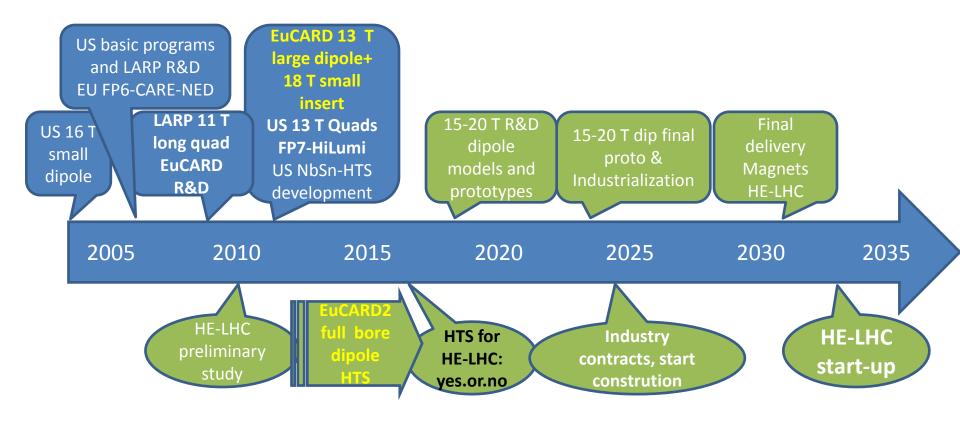
circumference	80 km
max beam energy	175 GeV
max no. of IPs	4
luminosity at 350 GeV c.m.	0.7x10 ³⁴ cm ⁻² s ⁻¹
luminosity at 240 GeV c.m.	$5x10^{34}$ cm ⁻ 2 s ⁻¹
luminosity at 160 GeV c.m.	2.5x10 ³⁵ cm ⁻² s ⁻¹
luminosity at 90 GeV c.m.	10 ³⁶ cm ⁻² s ⁻¹

16 T \Rightarrow 100 TeV in 100 km 20 T \Rightarrow 100 TeV in 80 km

LEGEND

LHC tunnel

•


HE_LHC 80km option potential shaft location

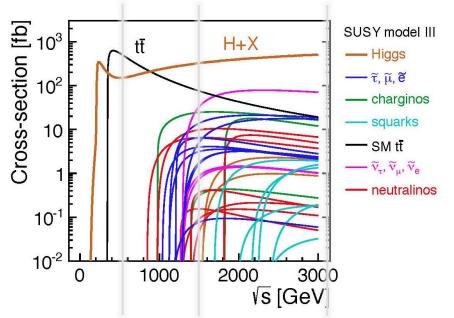
o 2012 Google Image X 2012 Google Image X 2012 IGN Frank

Geneva

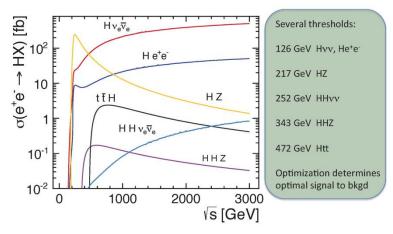
saleve .

An intense R&D programme is required to continue rigorously now if HE-LHC should become a real option for following the HL-LHC in the 2030s

HL-LHC work as a test bed


From L. Rossi, CERN

Physics at Linear Colliders from 250 GeV to 3000 GeV

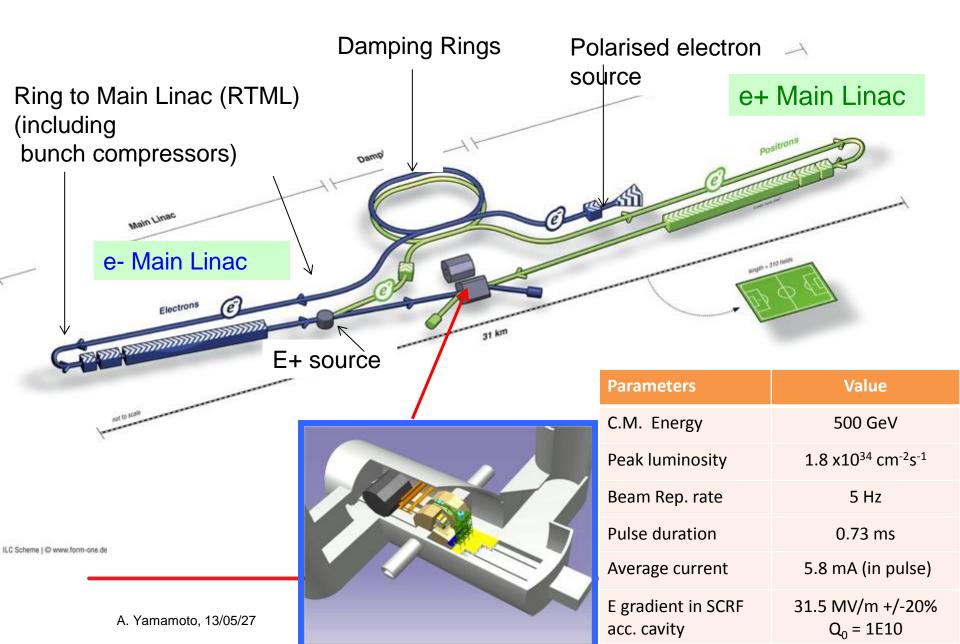

- Physics case for the Linear Collider:
 - Higgs physics (SM and non-SM)
 - **Top**
 - SUSY
 - Higgs strong interactions
 - New Z' sector
 - Contact interactions
 - Extra dimensions
 - •

Recently: Further work on completing picture of Higgs prospects at ~350 GeV, ~1.4 TeV, ~3 TeV, example for CLIC:

collision energy Polarization e⁻/e⁺	√s = 1.4 TeV unpolarized		√s = 3.0 TeV unpolarized	√s = 3.0 TeV -80% / +30%			
Δ σ(ΗΗνν)	≈ 22%	≈ 18%	≈ 10%	≈ 7%			
$\Delta \lambda_{HHH}$	≈ 28%	≈ 22%	≈ 16%	≈ 11%			
Numbers with polarized beams obtained by scaling signal and background cross section s, ignoring polarization-dependent changes to kinematic properties. all cross section values: mH = 120 GeV							
	•	· ·		mH = 120 GeV			

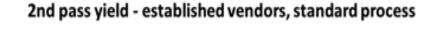
Higgs boson Production Cross-Sections

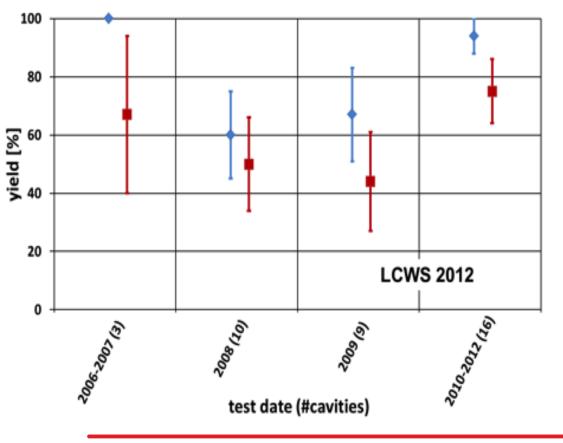
Lebrun et al., arXiv:1209.2543


European Organization for Nuclear Research *Organisation européenne pour la recherche nucléaire*

LINEAR COLLIDER COLLABORATION

ILC TDR Layout






Progress in SCRF Cavity Gradient

Production yield: 94 % at > 28 MV/m,

Average gradient: 37.1 MV/m

reached (2012)

A. Yamamoto, 13/05/27

ILC Technical Status

Accelerator System Tests

2009 ~

FLASH (DESY)

• TDP focus

- 7 CM \rightarrow 1.2 GeV beam
- photon user facility

NML (FNAL)

Under construction

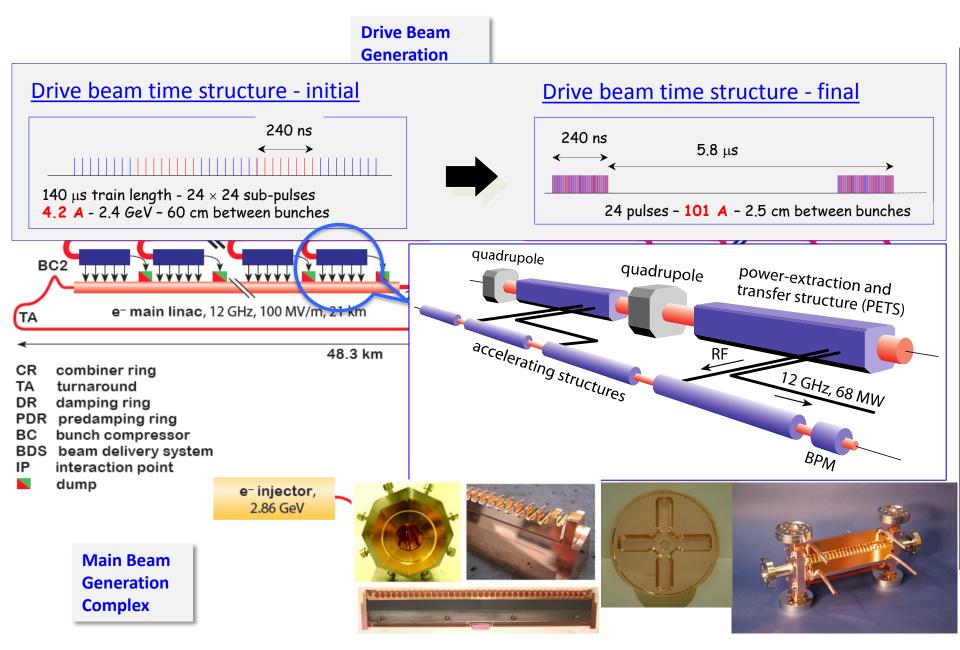
- Up to 6 cryomodules
- Operation: end 2012

• (3 CM)

STF (KEK)

• "Quantum Beam" experiment 2011

- 1 CM with beam 2013
- (2 CM 2015)



A. Yamamoto, 13/05/27

CLIC Layout at 3 TeV

Conclusion of the accelerator CDR studies

Main linac gradient	-	Uncertainty from beam loading being tested	
Drive beam scheme	-	Generation tested, used to accelerate test beam aboved as specifications, deceleration as expected Improvements on operation, reliability, losses, more deceleration studies underway	BE-7 TIB TO24 TO24 IE-7 ID18 ID18 ID18 80 90 100 110 Unloaded Accelerating Gradient MV/m
acceleration RF	traction and tructure (PETS)		CLIC Nominal, unloaded CLIC Nominal, loaded CLIC Nominal, loaded 20 0 20 0 20 0 20 0 20 0 20 0 20 0 2
Luminosity	- - -	Damping ring like an ambitious light source, no show stopper Alignment system principle demonstrated Stabilisation system developed, benchmarked, better system in pipeline Simulations on or close to the target	
Operation & Machine Protection	_	Start-up sequence and low energy operation defined Most critical failure studied and first reliability studies	
Implementation	- - -	Consistent three stage implementation scenario defined Schedules, cost and power developed and presented Site and CE studies documented	detector BDS accelerator 100 MV/m

unused arcs

U.

L=2.75 km

CLIC near CERN

Legend Lake Geneva **CERN** existing LHC Potential underground siting : CLIC 500 Gev CLIC 1.5 TeV 0000 CLIC 3 TeV Secta ar y parts Sign Vortes 00 00 00 **Jura Mountains** œ Tunnel implementations (laser straight) Geneva Central MDI & Interaction Region

Implications for Controls

- ...preparation of the round table discussion....
- Three tier design well establised everywhere...will persist
- Application layer....can not get much more complicated than at LHC; needs a lot of domain competence; underying technologies may evolve, the key is still to understand what you want and implement this. Security aspects, versioning and release tests will become more important (we are handling very fragile and expensive installations). Check limits of scalability.
- Middle tier and data storage will evolve together with industry standards. Scalability also an issue here.
- Front ends: A real development is needed here: Less expensive, radiation hard, cheap and reliable interconnectivity to data concentrators. Open source hardware and FE software, more modular with zillions of network attached devices.
- For the next years no real 'big boy 'construction projects in sight, but many other facilities, test stands and technology developments. Industry should act in this period as collaboration partner and not only as service provider for final installations.
- It seems all projects are based on a smaller and smaller core community at the host laboratories. Collaborations with industry vital (for both).