# **Combining Resummed Jet Bin Predictions**

Jonathan Walsh, UC Berkeley

work with

Radja Boughezal, Xiaohui Liu, Frank Petriello, and Frank Tackmann - 1312.4535

see also Frank Tackmann's talk and Iain Stewart, Frank Tackmann, JW, Saba Zuberi - 1307.1808 Xiaohui Liu, Frank Petriello - 1210.1906, 1303.4405





What can be done with H+0-jet predictions?

- Use in differential Higgs studies
- Combine with H+1-jet predictions for use in Higgs coupling measurements, e.g. H → WW



What can be done with H+0-jet predictions?

- ✓ Use in differential Higgs studies
- Combine with H+1-jet predictions for use in Higgs coupling measurements, e.g. H → WW





## Recent Work on (p\_) Jet Vetoes

|                       | <ul> <li>Banfi, Monni, Salam, Zanderighi - 1203.5773, 1206.4996, 1308.4634<br/>(also Z + 0 jets)</li> </ul> |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| H + 0 jets            | <ul> <li>Becher, Neubert, Rothen - 1205.3806, 1307.0025</li> </ul>                                          |  |  |
|                       | <ul> <li>Stewart, Tackmann, JW, Zuberi - 1206.4312, 1307.1808</li> </ul>                                    |  |  |
| H + 1 jet             | <ul> <li>Liu, Petriello - 1210.1906, 1303.4405</li> </ul>                                                   |  |  |
|                       | <ul> <li>Boughezal Liu, Petriello, Tackmann, JW (H + 0/1-jet) 1312.4535</li> </ul>                          |  |  |
| H + 2 jets            | <ul> <li>Gangal, Tackmann (fixed order uncertainties) - 1302.5437</li> </ul>                                |  |  |
| VH + 0 jets           | • (Chong Sheng) Li, (Hai Tao) Li, Shao - 1309.5015                                                          |  |  |
|                       | • (Ye) Li, Liu - 1401.2149                                                                                  |  |  |
| clustering<br>effects | • Alioli, JW - 1311.5234                                                                                    |  |  |

#### H + 0-jet and H + 1-jet Cross Sections

exclusive 0-jet events: no jets with  $p_{TJ} > p_T^{cut}$ 



jet p⊤



exclusive 1-jet events: exactly one jet with  $p_{TJ} > p_T^{cut}$ 







### H + 1-jet Cross Section: Ideal



### H + 1-jet Cross Section: Reality



## H + 1-jet Cross Section: Reality



## Combining 0-jet and 1-jet Bins



#### Bootstrapping from Inclusive 1-jet Resummation

relation for exclusive 1-jet cross section in bin [p<sub>T</sub><sup>cut</sup>, p<sub>T</sub><sup>off</sup>]:



#### Bootstrapping from Inclusive 1-jet Resummation

relation for exclusive 1-jet cross section in bin [p<sub>T</sub><sup>cut</sup>, p<sub>T</sub><sup>off</sup>]:

$$\sigma_1([p_T^{\text{cut}}, p_T^{\text{off}}]; p_T^{\text{cut}}) = [\sigma_0(p_T^{\text{off}}) - \sigma_0(p_T^{\text{cut}})] + [\sigma_{\geq 2}(p_T^{\text{off}}, p_T^{\text{cut}}) - \sigma_{\geq 2}(p_T^{\text{cut}}, p_T^{\text{cut}})]$$

0-jet (1-jet inclusive) terms use resummed results (equivalent to inclusive 1-jet) 2-jet inclusive terms use H+2-jet at NLO



## Testing the Matching



Matching of the "direct" and "indirect" approaches is smooth across pr<sup>cut</sup>

scheme A shows significantly reduced uncertainties

 $\pi^2$  resummation  $\Leftrightarrow$  H + 1j NNLO virtuals

## Testing the Matching



Matching of the "direct" and "indirect" approaches is smooth across prcut

scheme A shows significantly reduced uncertainties

 $\pi^2$  resummation  $\Leftrightarrow$  H + 1j NNLO virtuals

#### Testing the Matching



scheme A:  $\pi^2$  resummation, H + 1j NNLO virtuals





Matching scale (p<sub>T</sub><sup>off</sup>) dependence is small

#### Jet Bin Cross Sections



bin-by-bin uncertainties reduced by a factor of 2 over FO cross section in the WW analysis

 $\sigma_{WW} = \epsilon_0^{\rm acc} \sigma_0 + \epsilon_1^{\rm acc} \sigma_1 + \epsilon_{\geq 2}^{\rm acc} \sigma_{\geq 2}$ 

(jet bin cuts, leptonic cuts, reconstruction efficiencies)

need to determine the theoretical uncertainty on this cross section

#### Covariance Matrices

general form of the covariance matrix  $C = \begin{pmatrix} C_{00} & C_{01} & C_{0\geq 2} \\ C_{01} & C_{11} & C_{1\geq 2} \\ C_{0\geq 2} & C_{1\geq 2} & C_{\geq 2\geq 2} \end{pmatrix}$ basis of 0, 1,  $\geq$ 2 jet cross sections

need a way to parameterize physical sources of uncertainty

#### **Covariance Matrices**

general form of the covariance matrix

$$C = \begin{pmatrix} C_{00} & C_{01} & C_{0\geq 2} \\ C_{01} & C_{11} & C_{1\geq 2} \\ C_{0\geq 2} & C_{1\geq 2} & C_{\geq 2\geq 2} \end{pmatrix}$$

basis of 0, 1, ≥2 jet cross sections

need a way to parameterize physical sources of uncertainty

fully correlated  $C_{y} = \vec{\Delta}_{y}\vec{\Delta}_{y}^{T}$  yield uncertainty anti-correlated  $C_{cut} = \sum_{i,j} \begin{pmatrix} \Delta_{ij\,cut}^{2} & -\Delta_{ij\,cut}^{2} \\ -\Delta_{ij\,cut}^{2} & \Delta_{ij\,cut}^{2} \end{pmatrix}_{ij}$  bin migration uncertainty  $C = C_{y} + C_{cut}$ 

this decomposition is completely generic (no built-in assumptions) and can be associated with physical sources of uncertainty

#### 0 115 120 125 130 135 140 145 150 m<sub>H</sub>[GeV]

#### Combining Jet Bins

Signal strength: 
$$\mu = \frac{\sigma_{obs}}{\sigma_{exp}}$$
  $\sigma_{exp} = \epsilon_0^{exp} \sigma_0^{exp} + \epsilon_1^{exp} \sigma_1^{exp} + \epsilon_{\geq 2}^{exp} \sigma_{\geq 2}^{exp}$   
2-jet term  
negligible for  
 $gg \rightarrow H \rightarrow WW$ 

ATLAS measurement of signal strength in H > WW :

 $\mu_{\text{obs, 8 TeV}} = 1.26 \pm 0.24 \text{ (stat.)} \pm 0.21 \text{ (theo. syst.)} \pm 0.14 \text{ (expt. syst.)} \pm 0.06 \text{ (lumi.)}$ = 1.26 ± 0.35. ATLAS-CONF-2013-030

#### Combining Jet Bins

Signal strength: 
$$\mu = \frac{\sigma_{obs}}{\sigma_{exp}}$$
  $\sigma_{exp} = \epsilon_0^{exp} \sigma_0^{exp} + \epsilon_1^{exp} \sigma_1^{exp} + \epsilon_{\geq 2}^{exp} \sigma_{\geq 2}^{exp}$   

$$\frac{\Delta^{th, y} \mu}{\mu} = \frac{\Delta^{th, y} \sigma_{exp}}{\sigma_{exp}}$$

$$\Delta \sigma_{exp} = \left[ (\epsilon_0^{exp})^2 \Delta_0^2 + (\epsilon_1^{exp})^2 \Delta_1^2 + 2\epsilon_0^{exp} \epsilon_1^{exp} \operatorname{cov}(0, 1) \right]^{1/2}$$

Table 13: Leading uncertainties on the signal strength  $\mu$  for the combined 7 and 8 TeV analysis.

| Category     | Source                                    | Uncertainty, up (%) | Uncertainty, down (%) |
|--------------|-------------------------------------------|---------------------|-----------------------|
| Statistical  | Observed data                             | +21                 | -21                   |
| Theoretical  | Signal yield $(\sigma \cdot \mathcal{B})$ | +12                 | -9                    |
| Theoretical  | WW normalisation                          | +12                 | -12                   |
| Experimental | Objects and DY estimation                 | +9                  | -8                    |
| Theoretical  | Signal acceptance                         | +9                  | -7                    |
| Experimental | MC statistics                             | +7                  | -7                    |
| Experimental | W+ jets fake factor                       | +5                  | -5                    |
| Theoretical  | Backgrounds, excluding WW                 | +5                  | -4                    |
| Luminosity   | Integrated luminosity                     | +4                  | -4                    |
| Total        |                                           | +32                 | -29                   |

need to know the correlation between 0-jet, 1-jet bins

$$\Delta \sigma_{\exp} = \left[ (\epsilon_0^{\exp})^2 \Delta_0^2 + (\epsilon_1^{\exp})^2 \Delta_1^2 + 2\epsilon_0^{\exp} \epsilon_1^{\exp} \operatorname{cov}(0, 1) \right]^{1/2}$$

covariance matrices for ATLAS and CMS parameters:

$$C^{\text{ATLAS}} = \begin{pmatrix} 1.49 & -0.39 & 0.20 \\ -0.39 & 0.88 & -0.04 \\ 0.20 & -0.04 & 0.32 \end{pmatrix} \text{ pb}^2$$
$$C^{\text{CMS}} = \begin{pmatrix} 0.76 & 0.09 & 0.20 \\ 0.09 & 0.55 & 0.01 \\ 0.21 & 0.01 & 0.32 \end{pmatrix} \text{ pb}^2$$

signal yield uncertainty on ATLAS signal strength

$$\Delta_{\rm FO}^{\rm th, y} \mu = 0.12$$

$$\downarrow$$

$$\Delta_{\rm A}^{\rm th, y} \mu = 0.07$$

reduction by almost a factor of 2!

the signal yield uncertainty is no longer a dominant systematic

#### Conclusions

- A new approach and prediction for the exclusive H+1-jet cross sections that has resummation across the entire phase space
  - Direct resummation of the exclusive 1-jet rate at high jet p<sub>T</sub>, indirect resummation using the inclusive 1-jet rate at low jet p<sub>T</sub>
- Combined exclusive 0-jet and 1-jet predictions can be used in Higgs analyses
  - Roughly halves uncertainty compared to fixed order, can be directly used in H → WW signal strength measurement
  - Experiments are evaluating how to best utilize resummed results
  - W/Z+jets an interesting testing ground more data and more precise predictions can be made

#### Extra Slides