Jet p_T Resummation in Higgs Production

Frank Tackmann

Deutsches Elektronen-Synchrotron

Boston Jet Physics Workshop January 23, 2014

work with Iain Stewart, Jon Walsh, Saba Zuberi (arXiv:1307.1808)

Jets are used extensively in Higgs measurements

Jet selection and jet kinematics are important in event categorization to separate different Higgs production and decay channels, which is essential to measure Higgs couplings.

H

 \bm{b} $\bar{\bm{b}}$

t

Introduction $\det p_T$ Resummation $\det p_T$ are summation $\det p_T$ and $\det p_T$ are summation $\det p_T$ **also that the uncertainty [from th](#page-1-0)e 1-jet inclusive game of the 1-jet inclusive game of the 2-jet inclusive game of the zeros se[ction is anti-co](#page-7-0)rrelated between the zeros section is anti-correlated between the zeros secti**

Standard Example of Jet Binning: $H\to WW^$ an[d](#page-1-0) one jet analyses, and [i](#page-3-0)[n](#page-11-0) [pr](#page-6-0)actice represents the uncertain[ty](#page-7-0) [o](#page-9-0)ne of [t](#page-12-0)[h](#page-14-0)[e](#page-20-0) unce[r](#page-19-0)tainty of the relative normalisations of the uncertainty of the

Exclusive 0-jet and 1-jet bins are crucial \sim to control top background in $H\!\to\! WW$

Table 5 to reflect the treatment of correlations. For example, most object uncertainties are correlated

[ATLAS-CONF-2012-158]

 $p_{T}^{\mathrm{jet}}\leq p_{T}^{\mathrm{cut}}\simeq 25-30\,\mathrm{GeV}$ for $|\eta^{\rm jet}| \leq 4.5-5$

Perturbative QCD uncertainties are dominant syst. unc. in 0-jet and 1-jet bins [ATLAS, similar for CMS]

 $\Delta \sigma_0/\sigma_0 = 17\%$

$$
\bullet\,\,\Delta\sigma_1/\sigma_1=30\%
$$

∢ শী ৷

[Introduction](#page-1-0) $\det p_T$ $\det p_T$ [Resummation](#page-7-0) $\det p_T$ are summation $\det p_T$ and $\det p_T$ are summation $\det p_T$

Large Logarithms from Jet Selection

Jet selection cuts (or other types of exclusive measurements) can be sensitive to additional soft and collinear emissions

 \Rightarrow Restricting or cutting into soft radiation, ISR, or FSR causes large logarithms

Example: $qa \rightarrow H + 0$ jets

• Jet veto restricts $\text{ISR} \rightarrow t$ -channel singularities produce Sudakov double logarithms

$$
\sigma_0(p_T^{\rm cut}) \propto 1 - \frac{\alpha_s}{\pi} 6 \ln^2 \frac{p_T^{\rm cut}}{m_H} + \cdots
$$

- \Rightarrow Perturbative corrections get large for small p_T^{cut}
- \Rightarrow Should be reflected in perturbative uncertainties and better yet resummed

[Introduction](#page-1-0) $\det p_T$ $\det p_T$ [Resummation](#page-7-0) $\det p_T$ are summation $\det p_T$ and $\det p_T$ are summation $\det p_T$

Perturbative Structure of Jet Bin Cross Sections

$$
\sigma_{\text{total}} = \underbrace{\int_{0}^{p^{\text{cut}}} dp \frac{d\sigma}{dp}}_{\text{d}p} + \underbrace{\int_{p^{\text{cut}}}^{\infty} dp \frac{d\sigma}{dp}}_{\text{d}p}
$$
\n
$$
\sigma_{0}(p^{\text{cut}}) + \sigma_{\geq 1}(p^{\text{cut}})
$$
\n
$$
\sigma_{\text{total}} = 1 + \alpha_{s} + \alpha_{s}^{2} + \cdots
$$
\n
$$
\sigma_{\geq 1}(p^{\text{cut}}) = \alpha_{s}(L^{2} + L + 1) + \alpha_{s}^{2}(L^{4} + L^{3} + L^{2} + L + 1) + \cdots
$$
\n
$$
\sigma_{0}(p^{\text{cut}}) = \sigma_{\text{total}} - \sigma_{\geq 1}(p^{\text{cut}})
$$
\n
$$
= [1 + \alpha_{s} + \alpha_{s}^{2} + \cdots] - [\alpha_{s}(L^{2} + \cdots) + \alpha_{s}^{2}(L^{4} + \cdots) + \cdots]
$$

where $L=\ln(p^{\rm cut}/Q)$

- Logarithms are important for $p^{\rm cut}\ll Q\sim$ hard-interaction scale
- *Same* logarithms appear in the exclusive 0-jet and inclusive (≥ 1)-jet cross section (and cancel in their sum)

← 母→

Theory Uncertainties in Jet Binning

$$
\sigma_{\text{total}} = \int_0^{p^{\text{cut}}} \mathrm{d}p \, \frac{\mathrm{d}\sigma}{\mathrm{d}p} + \int_{p^{\text{cut}}}^{\infty} \mathrm{d}p \, \frac{\mathrm{d}\sigma}{\mathrm{d}p} = \sigma_0(p^{\text{cut}}) + \sigma_{\geq 1}(p^{\text{cut}})
$$

Complete description requires full theory covariance matrix for $\{\sigma_0, \sigma_{\geq 1}\}$

General physical parametrization in terms of 100% correlated and 100% anticorrelated pieces

$$
C = \begin{pmatrix} (\Delta_0^{\text{y}})^2 & \Delta_0^{\text{y}} \, \Delta_{\ge 1}^{\text{y}} \\ \Delta_0^{\text{y}} \, \Delta_{\ge 1}^{\text{y}} & (\Delta_{\ge 1}^{\text{y}})^2 \end{pmatrix} + \begin{pmatrix} \Delta_{\text{cut}}^2 & -\Delta_{\text{cut}}^2 \\ -\Delta_{\text{cut}}^2 & \Delta_{\text{cut}}^2 \end{pmatrix}
$$

Absolute "yield" uncertainty is fully correlated between bins

$$
\blacktriangleright \ \Delta_{\text{total}}^{\text{y}} = \Delta_0^{\text{y}} + \Delta_{\geq 1}^{\text{y}}
$$

• "Migration" unc. Δ_{cut} due to binning (must drop out in sum $\sigma_0 + \sigma_{\geq 1}$)

- ► Fixed-order region $(p^{\text{cut}} \sim Q)$: Δ_{cut} small and can be neglected
- ► Resummation region $(p^{\text{cut}} \ll Q)$: Δ_{cut} important and associated with uncertainties in $p^{\rm cut}$ log series 4 何)

[Introduction](#page-1-0) $\det p_T$ $\det p_T$ [Resummation](#page-7-0) $\det p_T$ and $\det p_T$ and $\det p_T$ are proportionally summary

Jet-Veto Observables

 \Rightarrow All are jet vetoes and technology exists to resum them (to at least NN[LL](#page-5-0)[\)](#page-6-0)

Resummation for $p_T^{\rm jet}$ \mathbf{T}

Various complications to deal with

- \bullet Jet-algorithm effects (R dependence)
- \bullet p_T requires renormalization of rapidity divergences in SCET-II [Chiu et al.]
- Matching to fixed order result at intermediate and large $p_T^{\rm jet}$
- Estimation of pert. uncertainties (including correlations)

Similar work by other groups

- \bullet H + 0 jets: Banfi, Monni, Salam, Zanderighi [1203.5773, 1206.4998]
- H + 0 jets: Becher, Neubert, Rothen [1205.3806, 1307.0025]
- H + 1 iet: Liu, Petriello [1210.1906, 1303.4405]
- \bullet H + 0 + 1 jet: Boughezal, Liu, Petriello, FT, Walsh [1312.4535] \rightarrow see Jon's talk next
- VH + 0 jets: Shao, Li, Li [1309.5015], Liu, Li [1401.2149]

4 何)

Jet Algorithm Effects in Local Vetoes

Definition of a local veto needs a jet algorithm with jet size R

$$
\mathcal{M}^{\text{jet}}(p_T^{\text{cut}}) = \prod_{\text{jets } j(R)} \theta(p_{Tj} < p_T^{\text{cut}})
$$

Algorithm effects start at $\mathcal{O}(\alpha_s^2)$. Consider correction relative to global veto

 $\mathcal{M}^{\rm jet} = \left(\mathcal{M}_{n_a}^G + \Delta\mathcal{M}_{n_a}^{\rm jet}\right)\left(\mathcal{M}_{n_b}^G + \Delta\mathcal{M}_{n_b}^{\rm jet}\right)\left(\mathcal{M}_s^G + \Delta\mathcal{M}_s^{\rm jet}\right) + \delta\mathcal{M}^{\rm jet}$

Clustering *within* each sector $\sim \mathcal{O}(\ln^n R), \, \mathcal{O}(R^n)$

- \Rightarrow Relevant for small $R \ll 1$
- Included in beam (collinear) and soft functions ^s ^c

Clustering *between* sectors $\sim \mathcal{O}(R^n)$

- \Rightarrow Relevant for large $R \sim 1$
	- Violates simple factorization into collinear and soft (母)

Factorization for Local $p_T^{\rm jet}$ Veto

For $R^2 \ll 1$ local jet-veto measurement factorizes into simple product

 $\mathcal{M}^{\mathrm{jet}} = \mathcal{M}^{\mathrm{jet}}_{n_a}\, \mathcal{M}^{\mathrm{jet}}_{n_b}\, \mathcal{M}^{\mathrm{jet}}_{s}$

 $\sigma_0(p_T^{\text{cut}}) = H(Q,\mu)B^{\text{jet}}(R,p_T^{\text{cut}},\mu,\nu)B^{\text{jet}}(R,p_T^{\text{cut}},\mu,\nu)S^{\text{jet}}(R,p_T^{\text{cut}},\mu,\nu)$

Logarithms are split apart and resummed using coupled RGEs in μ and ν

Resummation Structure and Log Counting

cut a

- "matching" are the singular FO corrections that act as starting/boundary conditions in the resummation (FO corrections to H, B, S)
- "full FO" means adding remaining FO terms not included in the resummation

+ @ →

Central Scale Choices

• Resummation region: Logs are resummed using canonical scaling

> $\mu_H \sim -im_H$ $\mu_S \sim p_T^{\rm cut}, \nu_S \sim p_T^{\rm cut}$ $\mu_B \sim p_T^{\rm cut}, \nu_B \sim m_H$

• FO region: Resummation turned off to ensure proper cancellation between singular and nonsingular terms by taking

 $\mu_B, \mu_S, \nu_S, \nu_B \rightarrow \mu_{\rm FO} \sim m_H$

• Transition region: Profiles for $\mu_B, \mu_S, \nu_B, \nu_S$ provide smooth transition from resummation to fixed-order region

Perturbative Uncertainties from Scale Variations

- Take max of collective up/down variation (+ where resum. turns off)
- \Rightarrow Equivalent to overall FO μ variation keeping logs fixed
- \Rightarrow Reproduces $\Delta_{\geq 0}^{\rm FO}$ for large $p_T^{\rm cut}$

 $\Rightarrow \Delta_i^y = \Delta_{\mu i}$

4 何)

Perturbative Uncertainties from Scale Variations

- Take max of collective up/down variation (+ where resum. turns off)
- \Rightarrow Equivalent to overall FO μ variation keeping logs fixed
- \Rightarrow Reproduces $\Delta_{\geq 0}^{\rm FO}$ for large $p_T^{\rm cut}$
- Take maximum from separately varying all low scales (within canonical constraints)
- \Rightarrow Directly estimates size of logs and missing higher log terms

$$
\Rightarrow \Delta_{\rm cut} = \Delta_{\rm resum}
$$

 $\Rightarrow \Delta_i^y = \Delta_{\mu i}$

∢ Aೌ

Resummed Results

(Here $\mathsf{NNLL}_{\bm{\mathcal{p}}_{\bm{T}}}$ refers to counting logarithms $\ln(p_T^\mathrm{cut}/m_H)$ only, but not $\ln R^2)$

At NNLL $_{p_{T}}^{\prime} +$ NNLO

 $\sigma_0(25 \,\mathrm{GeV}, R=0.4)$

 $= 12.67 \pm 1.22_{\text{pert}} (\pm 0.46_{\text{clust}}) \text{ pb}$

 $\sigma_0(30 \,\mathrm{GeV}, R=0.5)$ $= 13.85 \pm 0.87_{\text{pert}} (\pm 0.24_{\text{clust}}) \text{ pb}$

• Resummed pert. theory shows good convergence and reduced uncertainties compared to fixed (N)NLO

(母)

Resummed Results

(Here $\mathsf{NNLL}_{\bm{\mathcal{p}}_{\bm{T}}}$ refers to counting logarithms $\ln(p_T^\mathrm{cut}/m_H)$ only, but not $\ln R^2)$

At NNLL $_{p_{T}}^{\prime} +$ NNLO

 $\sigma_0(25 \,\mathrm{GeV}, R=0.4)$

 $= 12.67 \pm 1.22_{\text{pert}} (\pm 0.46_{\text{clust}}) \text{ pb}$

 $\sigma_0(30 \,\mathrm{GeV}, R=0.5)$ $= 13.85 \pm 0.87_{\text{pert}} (\pm 0.24_{\text{clust}}) \text{ pb}$

• Resummed pert. theory shows good convergence and reduced uncertainties compared to fixed (N)NLO

(母)

Resummed Results

(Here $\mathsf{NNLL}_{\bm{\mathcal{p}}_{\bm{T}}}$ refers to counting logarithms $\ln(p_T^\mathrm{cut}/m_H)$ only, but not $\ln R^2)$

At NNLL $_{p_{T}}^{\prime} +$ NNLO

 $\sigma_0(25 \,\mathrm{GeV}, R=0.4)$

 $= 12.67 \pm 1.22_{\text{pert}} (\pm 0.46_{\text{clust}}) \text{ pb}$

 $\sigma_0(30 \,\mathrm{GeV}, R=0.5)$ $= 13.85 \pm 0.87_{\text{pert}} (\pm 0.24_{\text{clust}}) \text{ pb}$

• Resummed pert. theory shows good convergence and reduced uncertainties compared to fixed (N)NLO

• Resummation provides systematic assessment of full theory unc. matrix

$$
C = \begin{pmatrix} \Delta_{\mu 0}^2 & \Delta_{\mu 0} \Delta_{\mu \ge 1} \\ \Delta_{\mu 0} \Delta_{\mu \ge 1} & \Delta_{\mu \ge 1}^2 \end{pmatrix} + \begin{pmatrix} \Delta_{\text{resum}}^2 & -\Delta_{\text{resum}}^2 \\ -\Delta_{\text{resum}}^2 & \Delta_{\text{resum}}^2 \end{pmatrix}
$$

(母)

Resummed Results

green: NLL_{pT} blue: $\mathsf{NLL}_{p_T}^\prime \!+\! \mathsf{NLO}$ orange: $\mathsf{NNLL}_{p_T}^\prime \!+\! \mathsf{NNLO}$

With full unc. matrix we can also make predictions for other quantities

● 0-jet fraction (jet-veto efficiency) $\epsilon_0(p_T^\mathrm{cut}) = \sigma_0(p_T^\mathrm{cut})/\sigma_\mathrm{total}$

• incl. 1-jet cross section

$$
\sigma_{\ge 1}(p_T^\mathrm{cut}) = \sigma_\mathrm{total} - \sigma_0(p_T^\mathrm{cut})
$$

[Introduction](#page-1-0) [Summary](#page-21-0) $\det\bm{p_{T}}$ $\det\bm{p_{T}}$ $\det\bm{p_{T}}$ [Resummation](#page-7-0) $\det\bm{p_{T}}$ resummation Summary Summary

Comparison to BMSZ

Banfi, Monni, Salam, Zanderighi [1203.5773, 1206.4998]

- Consider jet-veto efficiency as the primary quantity to resum
- Use QCD NNLL resummation for p_T^H [Bozzi, Catani, Grazzini] plus necessary correction terms to go from p_T^H to $p_T^{\rm jet}$

Comparison to BNR

Becher, Neubert, Rothen [1205.3806, 1307.0025]

- Use SCET-II together with "collinear anomaly" treatment to exponentiate rapidity logarithms
- Different organization of H , B , S , and nonsingular (similar uncertainties at highest order, but much poorer convergence)

4 何)

Comparison to ATLAS Data

ATLAS measurement of fiducial cross section in $H\!\rightarrow\!\gamma\gamma$ in bins of $p_T^{\rm jet}$ and corrected for detector effects

- Crucial transition step from fitting μ -values to measuring fiducial cross sections
	- \blacktriangleright Presents expt. results as theory independent as possible
	- \triangleright Can be (almost) directly compared to theory predictions

 $red: NNLL' + NNLO$ (Stewart, FT, Walsh, Zuberi) blue: NNLL+NNLO (Banfi, Monni, Salam, Zanderighi)

Summary

Differential and exclusive jet measurements are key to precision Higgs physics at LHC

- $gg \to H+0$ jet cross section determined to full $\mathsf{NNLL}'_{p_T}+\mathsf{NNLO}$
	- \blacktriangleright Resummation is important to reduce uncertainties
	- \triangleright Consistent treatment of correlations in theory uncertainties required
	- \blacktriangleright Jet algorithm effects can be sizable (In R^2 terms are formally NLL and not resummable at present)

There are many more things

- $\sqrt{\frac{1}{1}}$ Consistent combination with resummed $q\bar{q} \rightarrow H + 1$ jet
- $\sqrt{}$ VH production, boosted $H \to b\bar{b}$
- Other jet-binning/jet-veto variables $(\mathcal{T}^{\rm jet}, E_T)$
- 2-jet selection and VBF vs. gluon fusion separation
- **Backgrounds**

 \bullet ...

∢ শী ৷

Backup Slides

+ 伊 ▶

Numerical Jet Algorithm Effects at NNLO

For $R = 0.4$ (and also $R = 0.5$)

- Clustering $\ln R^2$ contributions are sizable
- Uncorrelated emission contributions (soft-collinear mixing) can safely be treated as $\mathcal{O}(R^2)$ power suppressed

 \Rightarrow Suggests that one should count $R^2 \sim p_T^{\rm cut}/m_H \ll 1$

[Backup](#page-22-0)
 \bullet O

4 何)

Clustering Logarithms

 $\mathcal{M}^{\rm jet} = \left(\mathcal{M}_{n_a}^G + \Delta\mathcal{M}_{n_a}^{\rm jet}\right)\left(\mathcal{M}_{n_b}^G + \Delta\mathcal{M}_{n_b}^{\rm jet}\right)\left(\mathcal{M}_{s}^G + \Delta\mathcal{M}_{s}^{\rm jet}\right) + \delta\mathcal{M}^{\rm jet}$

tools

Clea

 $\Delta \mathcal{M}_n^{\mathrm{jet}}, \Delta \mathcal{M}_s^{\mathrm{jet}}$: Correction from clustering of correlated emissions within soft and beam sectors

Gives rise to logs of R , leading clustering logs are

$$
\frac{\Delta\sigma^{(n)}}{\sigma_B} = C_n(R) \Big(\frac{\alpha_s C_A}{\pi}\Big)^n \, \ln\frac{m_H}{p_T^\mathrm{cut}} \, \ln^{n-1}R^2
$$

- For $R^2 \sim p_T^{\rm cut}/m_H \, \rightarrow \, \alpha_s^n L^n$ NLL series in the exponent that *cannot* be resummed at present
- Full $\alpha_s^2 C_2(R)$ term first computed by BMSZ
- \Rightarrow In SCET, these appear in the noncusp anomalous dimensions, allowing one to resum the $\ln(p_T^\mathrm{cut}/m_H)$ at NNLL_{p_T} [FT, Walsh, Zuberi]