Jet p_T Resummation in Higgs Production

Frank Tackmann

Deutsches Elektronen-Synchrotron

Boston Jet Physics Workshop January 23, 2014

work with Iain Stewart, Jon Walsh, Saba Zuberi (arXiv:1307.1808)

• Large QCD corrections in gluon fusion

- Jets from initial-state radiation
- Jets from (boosted) decays
- Associated signal jets in weak boson fusion

Jets are used extensively in Higgs measurements

 Jet selection and jet kinematics are important in event categorization to separate different Higgs production and decay channels, which is essential to measure Higgs couplings.

Standard Example of Jet Binning: H o WW

Exclusive 0-jet and 1-jet bins are crucial to control top background in $H \rightarrow WW$

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10) -
PDF model (signal only)	8	-
QCD scale (acceptance)	4	-
Jet energy scale and resolution	4	2
W+jets fake factor	-	5
WW theoretical model	-	5
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	26	-
2-jet incl. ggF signal ren./fact. scale	15) -
Parton shower/ U.E. model (signal only)	10	-
b-tagging efficiency	-	11
PDF model (signal only)	7	-
QCD scale (acceptance)	4	2
Jet energy scale and resolution	1	3
W+jets fake factor	-	5
WW theoretical model	-	3

$$p_T^{
m jet} \leq p_T^{
m cut} \simeq 25-30\,{
m GeV}$$
 for $|\eta^{
m jet}| < 4.5-5$

Perturbative QCD uncertainties are dominant syst. unc. in 0-jet and 1-jet bins [ATLAS, similar for CMS]

$$\Delta \sigma_0/\sigma_0 = 17\%$$

$$\Delta \sigma_1/\sigma_1 = 30\%$$

[ATLAS-CONF-2012-158]

Large Logarithms from Jet Selection

Jet selection cuts (or other types of exclusive measurements) can be sensitive to additional soft and collinear emissions

⇒ Restricting or cutting into soft radiation, ISR, or FSR causes large logarithms

Example: $gg \rightarrow H + 0$ jets

 Jet veto restricts ISR → t-channel singularities produce Sudakov double logarithms

$$\sigma_0(p_T^{
m cut}) \propto 1 - rac{lpha_s}{\pi} \, 6 \ln^2 rac{p_T^{
m cut}}{m_H} + \cdots$$

- \Rightarrow Perturbative corrections get large for small p_T^{cut}
- ⇒ Should be reflected in perturbative uncertainties and better yet resummed

Perturbative Structure of Jet Bin Cross Sections

$$\sigma_{
m total} = \underbrace{\int_0^{p^{
m cut}} {
m d}p}_{
m d} rac{{
m d}\sigma}{{
m d}p}_{
m d} + \underbrace{\int_{p^{
m cut}}^{\infty} {
m d}p}_{
m d} rac{{
m d}\sigma}{{
m d}p}_{
m d}$$

$$\begin{split} \sigma_{\geq 1}(p^{\text{cut}}) &= \alpha_s(L^2 + L + 1) + \alpha_s^2(L^4 + L^3 + L^2 + L + 1) + \cdots \\ \sigma_0(p^{\text{cut}}) &= \sigma_{\text{total}} - \sigma_{\geq 1}(p^{\text{cut}}) \\ &= \left[1 + \alpha_s + \alpha_s^2 + \cdots\right] - \left[\alpha_s(L^2 + \cdots) + \alpha_s^2(L^4 + \cdots) + \cdots\right] \end{split}$$

where $L = \ln(p^{\rm cut}/Q)$

 $\sigma_{\text{total}} = 1 + \alpha_s + \alpha^2 + \cdots$

- Logarithms are important for $p^{\text{cut}} \ll Q \sim$ hard-interaction scale
- Same logarithms appear in the exclusive 0-jet and inclusive (≥ 1)-jet cross section (and cancel in their sum)

Theory Uncertainties in Jet Binning

$$\sigma_{
m total} = \int_0^{p^{
m cut}} {
m d}p \, rac{{
m d}\sigma}{{
m d}p} + \int_{p^{
m cut}}^{\infty} {
m d}p \, rac{{
m d}\sigma}{{
m d}p} = \sigma_0(p^{
m cut}) + \sigma_{\geq 1}(p^{
m cut})$$

Complete description requires full theory covariance matrix for $\{\sigma_0,\sigma_{\geq 1}\}$

 General physical parametrization in terms of 100% correlated and 100% anticorrelated pieces

$$C = \begin{pmatrix} (\Delta_0^{\mathbf{y}})^2 & \Delta_0^{\mathbf{y}} \Delta_{\geq 1}^{\mathbf{y}} \\ \Delta_0^{\mathbf{y}} \Delta_{\geq 1}^{\mathbf{y}} & (\Delta_{\geq 1}^{\mathbf{y}})^2 \end{pmatrix} + \begin{pmatrix} \Delta_{\mathrm{cut}}^2 & -\Delta_{\mathrm{cut}}^2 \\ -\Delta_{\mathrm{cut}}^2 & \Delta_{\mathrm{cut}}^2 \end{pmatrix}$$

- Absolute "yield" uncertainty is fully correlated between bins
- "Migration" unc. Δ_{cut} due to binning (must drop out in sum $\sigma_0 + \sigma_{\geq 1}$)
 - lacktriangle Fixed-order region ($p^{\mathrm{cut}} \sim Q$): Δ_{cut} small and can be neglected
 - ▶ Resummation region ($p^{\text{cut}} \ll Q$): Δ_{cut} important and associated with uncertainties in p^{cut} log series

Jet-Veto Observables

"Local Veto" restrict (local chunks of) individual emissions

SCET-I

beam thrust

"jet beam thrust"

$$(p^+$$
-like scaling)

$$\mathcal{T} = \sum_i E_i - |p_i^z|$$

$$\mathcal{T}^{ ext{jet}} = \sum_{i \in ext{jet}} E_i - |p_i^z|$$

SCET-II

"beam broadening"

jet p_T $ec{p}_T^{
m jet} = \sum \, ec{p}_{Ti}$

$$(p_{\perp} ext{-like scaling})$$

$$E_T = \sum_i p_{Ti}$$

⇒ All are jet vetoes and technology exists to resum them (to at least NNLL)

Resummation for $p_T^{ m jet}$

Various complications to deal with

- Jet-algorithm effects (R dependence)
- ullet p requires renormalization of rapidity divergences in SCET-II [Chiu et al.]
- ullet Matching to fixed order result at intermediate and large $p_T^{
 m jet}$
- Estimation of pert. uncertainties (including correlations)

Similar work by other groups

- H + 0 jets: Banfi, Monni, Salam, Zanderighi [1203.5773, 1206.4998]
- H + 0 jets: Becher, Neubert, Rothen [1205.3806, 1307.0025]
- H + 1 jet: Liu, Petriello [1210.1906, 1303.4405]
- H + 0 + 1 jet: Boughezal, Liu, Petriello, FT, Walsh [1312.4535]
 → see Jon's talk next
- VH + 0 jets: Shao, Li, Li [1309.5015], Liu, Li [1401.2149]

Jet Algorithm Effects in Local Vetoes

Definition of a local veto needs a jet algorithm with jet size R

$$\mathcal{M}^{ ext{jet}}(p_T^{ ext{cut}}) = \prod_{ ext{jets}\, j(R)} hetaig(p_{Tj} < p_T^{ ext{cut}}ig)$$

Algorithm effects start at $\mathcal{O}(\alpha_s^2)$. Consider correction relative to global veto

$$\mathcal{M}^{\mathrm{jet}} = \left(\mathcal{M}_{n_{a}}^{G} + \Delta \mathcal{M}_{n_{a}}^{\mathrm{jet}}\right) \left(\mathcal{M}_{n_{b}}^{G} + \Delta \mathcal{M}_{n_{b}}^{\mathrm{jet}}\right) \left(\mathcal{M}_{s}^{G} + \Delta \mathcal{M}_{s}^{\mathrm{jet}}\right) + \delta \mathcal{M}^{\mathrm{jet}}$$

Clustering within each sector

$$\sim \mathcal{O}(\ln^n R), \, \mathcal{O}(R^n)$$

- \Rightarrow Relevant for small $R \ll 1$
 - Included in beam (collinear) and soft functions

Clustering between sectors

$$\sim \mathcal{O}(R^n)$$

- \Rightarrow Relevant for large $R \sim 1$
 - Violates simple factorization into collinear and soft

Factorization for Local $p_T^{ m jet}$ Veto

For $R^2 \ll 1$ local jet-veto measurement factorizes into simple product

$$\mathcal{M}^{\mathrm{jet}} = \mathcal{M}^{\mathrm{jet}}_{n_a} \, \mathcal{M}^{\mathrm{jet}}_{n_b} \, \mathcal{M}^{\mathrm{jet}}_{s}$$

$$\sigma_0(p_T^{\mathrm{cut}}) = \boldsymbol{H}(Q,\mu) B^{\mathrm{jet}}(R,p_T^{\mathrm{cut}},\mu,\nu) B^{\mathrm{jet}}(R,p_T^{\mathrm{cut}},\mu,\nu) S^{\mathrm{jet}}(R,p_T^{\mathrm{cut}},\mu,\nu)$$

Logarithms are split apart and resummed using coupled RGEs in μ and ν

Resummation Structure and Log Counting

$$\ln \sigma_0(p_T^{ ext{cut}}) \sim \sum_n lpha_s^n \ln^{n+1} rac{p_T^{ ext{cut}}}{m_H} \left(1 + lpha_s + lpha_s^2 + \cdots
ight) \sim ext{LL+NLL+NNLL} + \cdots$$

Resummation	Fixed-order corrections		Resummation input		
conventions:	matching	full FO	$\gamma_{H,B,S}^{\mu, u}$	$\Gamma_{ m cusp}$	$\boldsymbol{\beta}$
LL	1	-	-	1-loop	1-loop
NLL	1	-	1-loop	2-loop	2-loop
NLL+NLO	1	$lpha_s$	1-loop	2-loop	2-loop
NLL'+NLO	$lpha_s$	$lpha_s$	1-loop	2-loop	2-loop
NNLL+NLO	$lpha_s$	$lpha_s$	2-loop	3-loop	3-loop
NNLL+NNLO	$lpha_s$	$lpha_s^2$	2-loop	3-loop	3-loop
NNLL'+NNLO	$lpha_s^2$	$lpha_s^2$	2-loop	3-loop	3-loop
$N^3LL+NNLO$	$lpha_s^2$	$lpha_s^2$	3-loop	4-loop	4-loop

- "matching" are the singular FO corrections that act as starting/boundary conditions in the resummation (FO corrections to H, B, S)
- "full FO" means adding remaining FO terms not included in the resummation

Central Scale Choices

 Resummation region: Logs are resummed using canonical scaling

$$egin{aligned} \mu_H &\sim -\mathrm{i} m_H \ \mu_S &\sim p_T^{\mathrm{cut}},
ullet_S &\sim p_T^{\mathrm{cut}} \end{aligned} ,
onumber \ \mu_B &\sim p_T^{\mathrm{cut}},
ullet_B &\sim m_H \end{aligned}$$

 FO region: Resummation turned off to ensure proper cancellation between singular and nonsingular terms by taking

$$\mu_B, \mu_S, \nu_S, \nu_B \rightarrow \mu_{FO} \sim m_H$$

• Transition region: Profiles for $\mu_B, \mu_S, \nu_B, \nu_S$ provide smooth transition from resummation to fixed-order region

Perturbative Uncertainties from Scale Variations

Fixed-order scale variations

- Take max of collective up/down variation (+ where resum. turns off)
- \Rightarrow Equivalent to overall FO μ variation keeping logs fixed
- \Rightarrow Reproduces $\Delta^{FO}_{\geq 0}$ for large p_T^{cut}

$$\Rightarrow \Delta_i^{\mathrm{y}} = \Delta_{\mu i}$$

Perturbative Uncertainties from Scale Variations

Fixed-order scale variations

- Take max of collective up/down variation (+ where resum. turns off)
- \Rightarrow Equivalent to overall FO μ variation keeping logs fixed
- \Rightarrow Reproduces $\Delta^{\mathrm{FO}}_{>0}$ for large p_T^{cut}

$$\Rightarrow \Delta_i^{\mathrm{y}} = \Delta_{\mu i}$$

Resummation scale variations

- Take maximum from separately varying all low scales (within canonical constraints)
- ⇒ Directly estimates size of logs and missing higher log terms

$$\Rightarrow \Delta_{\mathrm{cut}} = \Delta_{\mathrm{resum}}$$

Resummed Results

(Here NNLL $_{p_T}$ refers to counting logarithms $\ln(p_T^{\rm cut}/m_H)$ only, but not $\ln R^2$)

At $NNLL'_{p_T} + NNLO$

 $egin{aligned} \sigma_0(25\,{
m GeV}, R &= 0.4) \ &= 12.67 \pm 1.22_{
m pert}(\pm 0.46_{
m clust})~{
m pb} \end{aligned}$

 $egin{aligned} \sigma_0(30\,\mathrm{GeV},R=0.5) \ &= 13.85 \pm 0.87_{\mathsf{pert}}(\pm 0.24_{\mathsf{clust}}) \; \mathrm{pb} \end{aligned}$

Resummation Transition Fixed Order

 Resummed pert. theory shows good convergence and reduced uncertainties compared to fixed (N)NLO

Resummed Results

(Here NNLL $_{p_T}$ refers to counting logarithms $\ln(p_T^{\mathrm{cut}}/m_H)$ only, but not $\ln R^2$)

At
$$NNLL'_{p_T} + NNLO$$

$$egin{aligned} \sigma_0(25\,{
m GeV}, R &= 0.4) \ &= 12.67 \pm 1.22_{
m pert}(\pm 0.46_{
m clust})~{
m pb} \end{aligned}$$

$$egin{aligned} \sigma_0(30\,\mathrm{GeV},R=0.5) \ &= 13.85\pm0.87_{\mathsf{pert}}(\pm0.24_{\mathsf{clust}})~\mathrm{pb} \end{aligned}$$

Resummation Transition Fixed Order

 Resummed pert. theory shows good convergence and reduced uncertainties compared to fixed (N)NLO Introduction

(Here NNLL_{pt} refers to counting logarithms $\ln(p_T^{\rm cut}/m_H)$ only, but not $\ln R^2$)

At NNLL' + NNLO

$$egin{aligned} \sigma_0(25\,{
m GeV}, R &= 0.4) \ &= 12.67 \pm 1.22_{
m pert}(\pm 0.46_{
m clust})~{
m pb} \end{aligned}$$

$$egin{aligned} \sigma_0(30\,\mathrm{GeV},R=0.5) \ &= 13.85\pm0.87_{\mathsf{pert}}(\pm0.24_{\mathsf{clust}})~\mathrm{pb} \end{aligned}$$

Resummation Transition Fixed Order

- Resummed pert. theory shows good convergence and reduced uncertainties compared to fixed (N)NLO
- Resummation provides systematic assessment of full theory unc. matrix

$$C = \begin{pmatrix} \Delta_{\mu 0}^2 & \Delta_{\mu 0} \; \Delta_{\mu \geq 1} \\ \Delta_{\mu 0} \; \Delta_{\mu \geq 1} & \Delta_{\mu \geq 1}^2 \end{pmatrix} + \begin{pmatrix} \Delta_{\rm resum}^2 & -\Delta_{\rm resum}^2 \\ -\Delta_{\rm resum}^2 & \Delta_{\rm resum}^2 \end{pmatrix}$$

Resummed Results

green: NLL_{pT}

blue: NLL'_{pT}+NLO

orange: NNLL'_{pT}+NNLO

With full unc. matrix we can also make predictions for other quantities

0-jet fraction (jet-veto efficiency)

$$\epsilon_0(p_T^{
m cut}) = \sigma_0(p_T^{
m cut})/\sigma_{
m total}$$

incl. 1-jet cross section

$$\sigma_{\geq 1}(p_T^{ ext{cut}}) = \sigma_{ ext{total}} - \sigma_0(p_T^{ ext{cut}})$$

Jet p_T Resummation

Comparison to BMSZ

$$\epsilon_0(p_T^{
m cut}) = \sigma_0(p_T^{
m cut})/\sigma_{
m total}$$

Banfi, Monni, Salam, Zanderighi [1203.5773, 1206.4998]

- Consider jet-veto efficiency as the primary quantity to resum
- Use QCD NNLL resummation for p_T^H [Bozzi, Catani, Grazzini] plus necessary correction terms to go from p_T^H to $p_T^{\rm jet}$

Comparison to BNR

Becher, Neubert, Rothen [1205.3806, 1307.0025]

- Use SCET-II together with "collinear anomaly" treatment to exponentiate rapidity logarithms
- Different organization of H, B, S, and nonsingular (similar uncertainties at highest order, but much poorer convergence)

Comparison to ATLAS Data

ATLAS measurement of fiducial cross section in $H\to\gamma\gamma$ in bins of $p_T^{\rm jet}$ and corrected for detector effects

- Crucial transition step from fitting μ-values to measuring fiducial cross sections
 - Presents expt. results as theory independent as possible
 - Can be (almost) directly compared to theory predictions

red: NNLL'+NNLO (Stewart, FT, Walsh, Zuberi)

blue: NNLL+NNLO

(Banfi, Monni, Salam, Zanderighi)

Summary

Differential and exclusive jet measurements are key to precision Higgs physics at LHC

- ullet gg
 ightarrow H+0 jet cross section determined to full NNLL $_{p_T}'+$ NNLO
 - Resummation is important to reduce uncertainties
 - Consistent treatment of correlations in theory uncertainties required
 - Jet algorithm effects can be sizable
 (ln R² terms are formally NLL and not resummable at present)

There are many more things

- \checkmark Consistent combination with resummed gg
 ightarrow H + 1 jet
- $\sqrt{}$ VH production, boosted $H o bar{b}$
- ullet Other jet-binning/jet-veto variables ($\mathcal{T}^{\mathrm{jet}},\,E_T$)
- 2-jet selection and VBF vs. gluon fusion separation
- Backgrounds
- •

Backup Slides

Numerical Jet Algorithm Effects at NNLO

full 2-loop contribution with no veto

full 2-loop contribution with veto clustering logs

For R=0.4 (and also R=0.5)

- Clustering ln R² contributions are sizable
- Uncorrelated emission contributions (soft-collinear mixing) can safely be treated as $\mathcal{O}(\mathbb{R}^2)$ power suppressed
- \Rightarrow Suggests that one should count $R^2 \sim p_T^{\rm cut}/m_H \ll 1$

Clustering Logarithms

$$\mathcal{M}^{\mathrm{jet}} = \left(\mathcal{M}_{n_a}^G + \Delta \mathcal{M}_{n_a}^{\mathrm{jet}}\right) \left(\mathcal{M}_{n_b}^G + \Delta \mathcal{M}_{n_b}^{\mathrm{jet}}\right) \left(\mathcal{M}_s^G + \Delta \mathcal{M}_s^{\mathrm{jet}}\right) + \delta \mathcal{M}^{\mathrm{jet}}$$

 $\Delta \mathcal{M}_n^{\mathrm{jet}}$, $\Delta \mathcal{M}_s^{\mathrm{jet}}$: Correction from clustering of correlated emissions within soft and beam sectors

Gives rise to logs of R, leading clustering logs are

$$\frac{\Delta \sigma^{(n)}}{\sigma_B} = C_n(R) \left(\frac{\alpha_s C_A}{\pi}\right)^n \ln \frac{m_H}{p_T^{\text{cut}}} \ln^{n-1} R^2$$

- For $R^2 \sim p_T^{\rm cut}/m_H \to \alpha_s^n L^n$ NLL series in the exponent that cannot be resummed at present
- Full $\alpha_s^2 C_2(R)$ term first computed by BMSZ
- \Rightarrow In SCET, these appear in the noncusp anomalous dimensions, allowing one to resum the $\ln(p_T^{\rm cut}/m_H)$ at NNLL_{p_T} [FT, Walsh, Zuberi]