

Pileup jet suppression in ATLAS

Pascal Nef

Boston Jets Workshop 2014, Massachusetts Institute Of Technology

21-23 January 2014

Pileup jet suppression in ATLAS

• Pileup is one of the main challenges for jets (and missing ET) at the LHC

Track-based pileup jet suppression

The need for pileup jet suppression

- Pileup effect on jets are mitigated by applying the jet-area pileup correction
 - based on event-by-event pileup p_T density
- *Local* fluctuations in the event-by-event pileup activity can give rise to **pileup jets**

JATIONAL

ABORATORY

- Track-based pileup jet suppression:
 - associate tracks to jets with $|\eta| < 2.5$
 - calculate the jet-vertex-fraction (**JVF**)

$$JVF = \frac{\sum_{i} p_{T,i}^{trk,HS}}{\sum_{i} p_{T,i}^{trk,HS} + \sum_{j} p_{T,j}^{trk,PU}}$$

JVF based PU jet suppression

- JVF is a measure of the fraction of track p_T from the HS PV
 - naturally decreases with N_{Vtx}

• The explicit pileup dependence of JVF leads to N_{Vtx} dependent hard-scatter jet efficiencies

NATIONAL

ACCELERATOR LABORATORY

- A key element of this talk:
 - new track-based variables to suppress pileup jets with N_{Vtx} insensitive jet efficiencies

new variables for PU jet suppression

• Correcting JVF for its explicit pileup dependence

NATIONAL

ACCELERATOR

new variables for PU jet suppression

• Another variable with large separation power:

$$R_{pT} = \left[\sum p_{T,j}^{trk,HS}\right]/p_{T}^{jet}$$

• $R_{pT} \sim charged fraction of a jet$

ACCELERATOR

- R_{pT} only uses pileup insensitive variables
 - tracks from the HS PV
 - fully-calibrated (pileup corrected) jet p_T

corrJVF vs. R_{pT} correlation

JVT performance

NATIONAL

ACCELERATOR LABORATORY • Cutting on JVT gives N_{Vtx} insensitive HS jet efficiencies

- Hard-scatter vs. pileup discrimination with JVT
 - fake rate of 0.4% for signal efficiency of 80%
 - fake rate of 1.0% for signal efficiency of 90%
 - fake rate of 4.0% for signal efficiency of 95%

ATL-PHYS-PUB-2014-001

Track-based grooming of large-R jets

Can we improve the grooming of large-R jets by exploiting tracking information?

Pascal Nef

NATIONAL

ACCELERATOR LABORATORY

- The pink large-R jet is **matched to the truth Z boson**
 - 3 subjets with $p_T^{sub}/p_T^{ungroomed} > 5\%$
 - only two subjets have associated tracks from the HS PV

- The pink large-R jet is **matched to** the truth Z boson
 - 3 subjets with $p_T^{sub}/p_T^{ungroomed} > 5\%$
 - only two subjets have • associated tracks from the HS PV

- The pink large-R jet is **matched to** the truth Z boson
 - 3 subjets with $p_T^{sub}/p_T^{ungroomed} > 5\%$
 - only two subjets have • associated tracks from the HS PV

 $m_{W'} = 1 \text{ TeV}$

ATLAS Simulation Preliminary

PU track

. HS track

Pythia8 (W' \rightarrow WZ \rightarrow qqqq)

- The pink large-R jet is **matched to the truth Z boson**
 - 3 subjets with $p_T^{sub}/p_T^{ungroomed} > 5\%$
 - only two subjets have associated tracks from the HS PV

$$m_j = 88.7 \text{ GeV}$$

 using tracking information to remove pileup subjets may improve the jet mass resolution

ATL-PHYS-PUB-2014-001

corrJVF-based trimming

• subjet corrJVF vs. p_T^{subj}/p_T^{ungroomed} in W'->WZ->qqqq events

LABORATORY

corrJVF-based trimming

subjet p_T based trimming in combination with corrJVF
which f_{cut} is optimal?

NATIONAL

ABORATORY

- looking at large-R jets matched to the
 - truth Z boson
 - jet p_T > 300 GeV

- calculating the trimmed jet mass from subjets passing:
 - corrJVF & $f_{cut} = 10\%$
 - too aggressive
 - corrJVF only:
 - already quite good, but slightly too loose
 - corrJVF & f_{cut}= 4%
 - best mass resolution for this signal

Pileup removal with jet cleansing

 comparing corrJVF-based grooming with jet cleansing (arXiv:1309.4777) [see dedicated talk by Matthew Low] linear jet cleansing • JVF jet cleansing jet cleansing aims to approximate the subjet p from the HS PV: JVF cleansing: • scale 4-momentum by JVF linear cleansing: scale subjet 4-momentum based on the assumption that p_T^{charged} / p_T^{total} from pileup is 0.55

 In 2012 pileup conditions, performance (in terms of mass resolution) of track-based procedures are similar to a calorimeter-only based f_{cut} = 5%.

Conclusions

- Pileup mitigation was important for many 8 TeV analyses, and will be event more so for future LHC runs.
- Presented new results on pileup jet suppression:
- new 2D likelihood-based discriminant ...
 - shows excellent pileup vs. hard-scatter discrimination power
 - results in hard-scatter jet efficiency that is flat with N_{Vtx}

- First ATLAS results on track-assisted grooming procedures
 - more studies ongoing
- The results presented here are published in **ATL-PHYS-PUB-2014-001**

JATIONAL

BORATORY

• A CONF note with more details is in preparation ... stay tuned.

Additional Material

HS jet efficiency in data

NATIONAL

ACCELERATOR LABORATORY

• Hard scatter jet efficiency for various JVF cuts in Z->ll events for **data and MC**

Pascal Nef