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Pileup jet suppression in ATLAS
• Pileup is one of the main challenges for jets (and missing ET) at the LHC

• Pileup adds additional energy 
(offset) and degrades the   
jet energy resolution

• Pileup can give rise to  
pileup jets

• Pileup has a large effect on jet 
shapes and jet mass

• ATLAS-CONF-2013-085: Pile-up subtraction for jet shapes!
• ATLAS-CONF-2013-083: Pile-up subtraction and suppression for jets!
• ATLAS-CONF-2012-066: Impact and mitigation of pile-up on large-R and groomed jets!
• Approved plots:               Exhaustive studies of pileup effects in jetETmiss up to <μ>=200

• Today’s new results: ATL-PHYS-PUB-2014-001!
• Track-based pileup jet suppression!
• Track-assisted grooming of large-R jets

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissPublicResults
http://cds.cern.ch/record/1643929/
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Track-based pileup jet suppression
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The need for pileup jet suppression
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(a) pT > 20 GeV
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(b) pT > 30 GeV
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(c) pT > 40 GeV
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(d) pT > 50 GeV

Figure 30: The mean anti-kt, R = 0.4, LCW+JES jet multiplicity against hµi in Z+jet events for jets with
|⌘| < 2.1 before and after selected |JVF| cuts as applied to any jets with pT < 50 GeV. Results for jets
with pT > 20, 30, 40 and 50 GeV are shown requiring at least one jet of that pT. To remove e↵ects of
hard scatter modeling the dependence on hµi was fit and the MC shifted so that data and MC agree at
zero pile-up, hµi = 0. The upper ratio plots show before and after an application of a |JVF| cut of 0.25
and the lower ratio plots show the same for a cut of 0.50. No JVF uncertainty is visible when counting
jets with pT > 50 as JVF is only applied to jets below 50 GeV.
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Figure 30: The mean anti-kt, R = 0.4, LCW+JES jet multiplicity against hµi in Z+jet events for jets with
|⌘| < 2.1 before and after selected |JVF| cuts as applied to any jets with pT < 50 GeV. Results for jets
with pT > 20, 30, 40 and 50 GeV are shown requiring at least one jet of that pT. To remove e↵ects of
hard scatter modeling the dependence on hµi was fit and the MC shifted so that data and MC agree at
zero pile-up, hµi = 0. The upper ratio plots show before and after an application of a |JVF| cut of 0.25
and the lower ratio plots show the same for a cut of 0.50. No JVF uncertainty is visible when counting
jets with pT > 50 as JVF is only applied to jets below 50 GeV.
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• Pileup effect on jets are mitigated by applying  
the jet-area pileup correction!
• based on event-by-event pileup pT density 

after P
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• Local fluctuations in the event-by-event pileup 
activity can give rise to pileup jets

• Track-based pileup jet suppression:!
• associate tracks to jets with |η|<2.5!
• calculate the jet-vertex-fraction (JVF)

JVF =

P
i p

trk,HS
T,iP

i p
trk,HS
T,i +

P
j p

trk,PU
T,j

after JVF

ATLAS-CONF-2013-083
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neutral pile-up contributions may receive JVF = 1, while JVF = 0 may result from a fluctuation in the
fragmentation of a hard-scatter jet such that its charged constituents all fall below the track pT threshold.
JVF also relies on the hard-scatter vertex being well separated from pile-up vertices. In some events, a
pile-up jet may receive a high value of JVF because its origin interaction is very close to the hard-scatter
interaction. While this e↵ect is quite small in 2012 pile-up conditions, it will become more important at
higher hµi, as the average distance between interactions decreases as 1/hµi.
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Figure 26: JVF distribution for hard-scatter (blue) and pile-up (red) jets with 20 GeV  pjet
T < 50 GeV

and |⌘| < 2.5 in simulated Z+jets events. Using JVF directly as a discriminating variable provides a way
to separate both classes of jets.

7.2 Recommended JVF Cuts

In 2012, three JVF cuts are recommended for analyses in which pile-up jets are otherwise problematic.
The loosest recommended cut is |JVF| > 0, which rejects only those jets that have zero matched tracks
from the hard scatter. A somewhat tighter cut is |JVF| > 0.25, requiring that at least a quarter of all
associated track pT originates from the hard scatter, while the tightest recommended cut is |JVF| > 0.5.
The cuts are applied to the absolute value of JVF, to avoid rejecting jets with zero matched tracks from
any vertex.

Each analysis applying a JVF cut must choose an optimal cut value among the three recommended
cuts, based on analysis-specific figures of merit. For example, given some definition of signal jets appro-
priate to an analysis, one could choose the JVF cut value that maximizes the signal jet e�ciency divided
by the rate for non-signal jets to pass the cut. Alternatively, one could choose the cut value that results in
stability of jet multiplicity against pile-up, or devise a more sophisticated optimization procedure based
on expected limits or measurement precision.

Figure 27 shows the dependence of JVF on the amount of pile-up, as characterized by the average
number of interactions, hµi. The denominator of JVF grows larger with increased pile-up, while the
numerator remains unchanged. As a result, the optimal JVF cut value is expected to depend on pile-
up conditions, which further emphasizes the need for analysis-specific JVF cut optimization. The ratio
between data and MC is shown at the bottom.
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Figure 27: JVF distribution for di↵erent hµi bins for jets with pjet
T > 20 GeV and |⌘| < 2.5. JVF is shifted

closer to zero as the level of pile-up activity increases.

It is also necessary to define the kinematic range over which to apply the JVF cut. Figure 28 demon-
strates that the number of jets with JVF = 0 increases significantly in the 2.1 � |⌘| < 2.8 range, due
to the hard-scatter core of the jet being located outside the ID acceptance while some part of the jet pe-
riphery remains inside, resulting in zero hard-scatter tracks but one or more pile-up tracks successfully
associated to the jet. Figure 28 also shows that most of the jets with JVF = �1 are jets outside the ID
acceptance. To avoid a loss in signal e�ciency due to this e↵ect, it is recommended to apply the JVF
cut only to jets with |⌘| < 2.4. Additionally, studies performed in di↵erent topologies of di-jet, top and
Z+jets events have shown that 99% of pile-up jets with pjet

T > 20 GeV have pT < 50 GeV. Therefore,
applying a JVF cut above pT = 50 GeV is not necessary in most analyses.

7.3 Modeling of JVF

The modelling of JVF is investigated in events where a boosted Z boson (pZ
T > 30 GeV) and a jet

(|⌘| < 2.5 and pT > 20 GeV) were produced back-to-back (��(Z, leading jet) > 2.9), thus providing a
nearly pure sample of hard-scatter jets (HS region). By comparison to truth jets in MC, it was found that
the level of pile-up jet contamination in this sample is close to 2% at low pT and almost zero at high pT.
The JVF distribution for the jet balanced against the Z boson in these events is shown in Fig. 29. It is
observed that the JVF distribution is well modelled for hard-scatter jets.

However, the total jet multiplicity in these events is somewhat over-estimated in simulated events,
due to mis-modeling of pile-up jets. This is shown in Fig. 30, for several di↵erent choices of minimum
pT cut applied at the fully calibrated LCW+JES scale (including jet-area based pile-up subtraction). The
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It is also necessary to define the kinematic range over which to apply the JVF cut. Figure 28 demon-
strates that the number of jets with JVF = 0 increases significantly in the 2.1 � |⌘| < 2.8 range, due
to the hard-scatter core of the jet being located outside the ID acceptance while some part of the jet pe-
riphery remains inside, resulting in zero hard-scatter tracks but one or more pile-up tracks successfully
associated to the jet. Figure 28 also shows that most of the jets with JVF = �1 are jets outside the ID
acceptance. To avoid a loss in signal e�ciency due to this e↵ect, it is recommended to apply the JVF
cut only to jets with |⌘| < 2.4. Additionally, studies performed in di↵erent topologies of di-jet, top and
Z+jets events have shown that 99% of pile-up jets with pjet

T > 20 GeV have pT < 50 GeV. Therefore,
applying a JVF cut above pT = 50 GeV is not necessary in most analyses.

7.3 Modeling of JVF

The modelling of JVF is investigated in events where a boosted Z boson (pZ
T > 30 GeV) and a jet

(|⌘| < 2.5 and pT > 20 GeV) were produced back-to-back (��(Z, leading jet) > 2.9), thus providing a
nearly pure sample of hard-scatter jets (HS region). By comparison to truth jets in MC, it was found that
the level of pile-up jet contamination in this sample is close to 2% at low pT and almost zero at high pT.
The JVF distribution for the jet balanced against the Z boson in these events is shown in Fig. 29. It is
observed that the JVF distribution is well modelled for hard-scatter jets.

However, the total jet multiplicity in these events is somewhat over-estimated in simulated events,
due to mis-modeling of pile-up jets. This is shown in Fig. 30, for several di↵erent choices of minimum
pT cut applied at the fully calibrated LCW+JES scale (including jet-area based pile-up subtraction). The
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JVF based PU jet suppression
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• JVF is a measure of the fraction of track pT 
from the HS PV!
• naturally decreases with NVtx
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• A key element of this talk:!
• new track-based variables to suppress 

pileup jets with NVtx insensitive jet 
efficiencies

PU 

• The explicit pileup dependence of JVF leads 
to NVtx dependent hard-scatter jet efficiencies

ATL-PHYS-PUB-2014-001

ATLAS-CONF-2013-083
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new variables for PU jet suppression
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• Correcting JVF for its explicit pileup dependence

mean pT from PU trk  
increases linearly with NtrkPU 
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HS jet efficiency as a  
function of NVtx !
• JVF degrades by 20% !
• corrJVF stable at 90±1%

corrJVF

JVF

ATL-PHYS-PUB-2014-001 ATL-PHYS-PUB-2014-001 • NtrkPU= total number of  
pileup tracks in the event
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• Another variable with large separation power:!
!
!
• RpT ~ charged fraction of a jet
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new variables for PU jet suppression
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• RpT only uses pileup insensitive variables!
• tracks from the HS PV!
• fully-calibrated (pileup corrected) jet pT

PU jets have no or only little!
pT from pileup tracks

for RpT: HS efficiency is stable with NVtx

ATL-PHYS-PUB-2014-001 ATL-PHYS-PUB-2014-001

RpT

JVF
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corrJVF vs. RpT correlation
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• PU jets populate low RpT - 
low corrJVF region!

• HS jets are mostly in 
moderate RpT - large corrJVF 
region

• Exploit corrJVF - RpT correlation to gain discrimination power

• Construct a discriminator based on full 2D likelihood 
using a nearest neighbor algorithm!
• jet-vertex-tagger JVT 
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jets with  
no tracks
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JVT performance

• Hard-scatter vs. pileup discrimination with JVT!
• fake rate of 0.4% for signal efficiency of 80%!
• fake rate of 1.0% for signal efficiency of 90%!
• fake rate of 4.0% for signal efficiency of 95%
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• Cutting on JVT gives NVtx insensitive  
HS jet efficiencies 
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Track-based grooming of large-R jets
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ATLAS  Simulation Preliminary 
Pythia8 (W’ WZ  qqqq) 
mW’ = 1 TeV

Can we improve the grooming of large-R jets by exploiting 
tracking information?

ATL-PHYS-PUB-2014-001
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track-based trimming of large-R jets
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ATLAS  Simulation Preliminary 
Pythia8 (W’ WZ  qqqq) 
mW’ = 1 TeV

track-based trimming of large-R jets

HS track
PU track

• The pink large-R jet is matched to 
the truth Z boson!
• 3 subjets with  

pTsub/pTungroomed > 5% !
• only two subjets have  

associated tracks from the HS PV
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ATLAS  Simulation Preliminary 
Pythia8 (W’ WZ  qqqq) 
mW’ = 1 TeV

track-based trimming of large-R jets

HS track
PU track

mj =119 GeV

• The pink large-R jet is matched to 
the truth Z boson!
• 3 subjets with  

pTsub/pTungroomed > 5% !
• only two subjets have  

associated tracks from the HS PV
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ATLAS  Simulation Preliminary 
Pythia8 (W’ WZ  qqqq) 
mW’ = 1 TeV

track-based trimming of large-R jets

HS track
PU track

mj =119 GeV

mj =88.7 GeV

• The pink large-R jet is matched to 
the truth Z boson!
• 3 subjets with  

pTsub/pTungroomed > 5% !
• only two subjets have  

associated tracks from the HS PV

ATL-PHYS-PUB-2014-001
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• The pink large-R jet is matched to 
the truth Z boson!
• 3 subjets with  

pTsub/pTungroomed > 5% !
• only two subjets have  

associated tracks from the HS PV
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ATLAS  Simulation Preliminary 
Pythia8 (W’ WZ  qqqq) 
mW’ = 1 TeV

track-based trimming of large-R jets

HS track
PU track

mj =119 GeV

mj =88.7 GeV

• using tracking information to 
remove pileup subjets may 
improve the jet mass resolution

ATL-PHYS-PUB-2014-001
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corrJVF-based trimming
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ATLAS Simulation Preliminary
 qqqq) WZPythia8 (W'

 = 1 TeVW'M
 LCW R=1.0 jettAnti-k
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corrJVF < cut

• subjet corrJVF vs. pTsubj/pTungroomed in W’->WZ->qqqq events!
• ungroomed jet pT > 300 GeV

PU HS

• “high” pT  
pileup jets  

• fcut = 5% 
line

ATL-PHYS-PUB-2014-001
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• subjet pT based trimming in combination with corrJVF!
• which fcut is optimal?
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corrJVF-based trimming
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• calculating the trimmed jet mass from subjets 
passing:!
• corrJVF & fcut = 10% !

• too aggressive!
• corrJVF only:!

• already quite good, but slightly too loose !
• corrJVF & fcut= 4% !

• best mass resolution for this signal

• looking at large-R jets matched to the 
truth Z boson!
• jet pT > 300 GeV
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Pileup removal with jet cleansing
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• comparing corrJVF-based grooming  
with jet cleansing (arXiv:1309.4777)  
[see dedicated talk by Matthew Low]!
• linear jet cleansing!
• JVF jet cleansing

jet cleansing aims to approximate the subjet p from 
the HS PV:!
• JVF cleansing: !

• scale 4-momentum by JVF!
• linear cleansing: !

• scale subjet 4-momentum based on the 
assumption that pTcharged / pTtotal from pileup  
is 0.55  

• In 2012 pileup conditions, performance (in terms of mass resolution) of track-based procedures are 
similar to a calorimeter-only based fcut = 5%. 

ATL-PHYS-PUB-2014-001

lin. cleansing

JVF cleansing

fcut = 5%
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Conclusions

• Pileup mitigation was important for many 8 TeV analyses, and will be 
event more so for future LHC runs.
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ATLAS  Simulation Preliminary 
Pythia8 (W’ WZ  qqqq) 
mW’ = 1 TeV
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Pythia8 dijets
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• Presented new results on pileup jet suppression:!
• new 2D likelihood-based discriminant …!

• shows excellent pileup vs. hard-scatter discrimination power!
• results in hard-scatter jet efficiency that is flat with NVtx 

• First ATLAS results on track-assisted grooming procedures!
• more studies ongoing

• The results presented here are published in  
ATL-PHYS-PUB-2014-001!

• A CONF note with more details is in preparation … stay tuned. 
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Additional Material
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HS jet efficiency in data
• Hard scatter jet efficiency for various JVF cuts in Z->ll events for data and MC
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Figure 31: EMC and Edata in Z(! ee)+jets events as a function of (a) pT and (b) hµi. Three di↵erent JVF
operating points: 0.0, 0.25, 0.50 are shown. Jets with a pjet

T > 20 GeV and |⌘| < 2.4 are considered.

pile-up. All systematic uncertainties are presented as shifts in the fully calibrated jet pT as a function of ⌘
and pT, for several jet collections. While typically below 2% for R = 0.4 anti-kt jets with pT > 40 GeV in
the central region of the calorimeters, they reach up to 5.6% at low pT and higher ⌘. In the future we will
extend the uncertainty description, providing uncertainties on the uncertainties to enable sophisticated
treatment of these systematic e↵ects in analyses.

The use of the jet vertex fraction as a discriminating variable for rejection of pile-up jets was also
presented, with recommended cut values and a kinematic range in which to apply the JVF cut. Systematic
variations in the JVF cut value were suggested, based on modeling of the e�ciency for hard-scatter jets to
pass each cut in well-balanced Z+jet events. These systematic variations do not cover the observed over-
estimation of pile-up jet multiplicity in simulation, but the application of a JVF cut e↵ectively removes
this mis-modeling by rejecting the vast majority of pile-up jets.

38

ATLAS-CONF-2013-083 ATLAS-CONF-2013-083


