
Extra Slides for

Christopher Lee

QCD Resummation: 
Direct and Effective Methods

January 23, 2014
2nd Boston Jet Physics Workshop



NLL, a = -1
sRHt-1L
snHt-1L

0.00 0.02 0.04 0.06 0.08 0.100

10

20

30

40

50

t-1

s
Ht -1
L

NLL, a = 0
sRHt0L
snHt0L

0.00 0.05 0.10 0.15 0.200

5

10

15

20

25

30

t0

s
Ht 0L

NLL, a = 1ê4
sRHt1ê4L
snHt1ê4L

0.00 0.05 0.10 0.15 0.20 0.250

5

10

15

20

25

t1ê4

s
Ht 1ê4
L

NLL, a = 1ê2
sRHt1ê2L
snHt1ê2L

0.00 0.05 0.10 0.15 0.20 0.25 0.300

5

10

15

20

25

t1ê2

s
Ht 1ê2
L

N.B. Uncertainty estimates nominal: 
canonical scales (no profiles), simple variation by factors of 2

µ=µH = Q,µJ = Q⌧1/(2�a)
a , µS = Q⌧a
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Better agreement between two forms, and with data at least in peak region (not shown)
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Using scale profiles from Abbate, Fickinger, Hoang, Mateu, Stewart (2010)

exhibits better convergence than          order to order�R �n

CL, Walsh [preliminary]
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I. Compare SCET vs. factorization-based resummations:
angularities.

• One of a set of side-by-side calculations based on:

1. Factorized cross sections in pQCD

2. Scet treatments

• e+e� event shapes: angularities of a < 1

⌧a = X

i2jet
|pT,i| e�|⌘i| (1�a)

• Also: “Threshold” resummation of corrections for:

– Drell-Yan (W, Z, H)

– Direct photon

– Heavy quark: total and di↵erential in ~p.
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• Motivations . . .

• Do the resummed/scet treatments give same di↵erent pre-
dictions, formally equivalent but di↵erent in implementation,
or what?

• Can we learn something by comparing them? Extensions to
other processes?

• What are our best predictions?

• The “factorized list is longer so far – Drell-Yan QT , inclusive
jets, dihadrons . . . serious comparison may facilitate progress.
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• From Hornig, Lee Ovanesyan (2009) for angularities: compar-
ing NLL calculations (Chris Lee’s talk)
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Figure 10: Factorization scale µ variation of the (unmatched, partonic) SCET NLL/LO (light
blue band) and the classic QCD NLL/LO (red band) resummed results for angularity distributions.
µ is varied over the range Q

2 � µ � 2Q with Q = 100 GeV for the cases a = �1, a = 0, a = 1/4,
and a = 1/2. To make a direct comparison to the QCD results, the scales in the SCET results have
been chosen as µ = µH = Q, µJ = Q�1/(2�a)

a , and µS = Q�a.

One major advantage of the SCET approach over the classic approach is the presence
of Landau pole singularities in the results of the classic approach that are not in the re-
sults from SCET, as also found in the cases of DIS and Drell-Yan [49, 50, 51]. We can
illustrate why SCET avoids this for the case of angularities by returning to our results for
the resummed jet and soft functions and for the final resummed distribution. From the
expressions for the resummed soft function Sa(� s

a), Eq. (4.25), and for the resummed jet
function Jn

a (�n
a ), Eq. (4.26), one might be tempted to set µS = Q� s

a and µJ = Q(�n
a )1/(2�a),

since the logarithms in Eqs. (4.25) and (4.26) are minimized for these choices. The prob-
lem with this choice is that the soft and jet functions still enter the convolution in the
factorization theorem Eq. (1.1) and thus the scales in �s(µJ/S) run below �n,s

a = �QCD/Q

even for �a > �QCD/Q (where �a = �n
a + � n̄

a + � s
a) if these �n,s

a -dependent scales are chosen.
However, for a � s

a -independent choice of µS in the case of the soft function, for instance,
the full functional dependence of the resummed S(� s

a ;µ) on � s
a and µS is such that after the

integrals over � s
a , �n

a , and � n̄
a needed to get to the final resummed distribution, Eq. (4.27),

– 39 –

• Where does the di↵erence come from?
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• The plot compares (well, George thinks) – not sophisticated
matchings – the formulas:

• SCET NLL version of: (Hornig, Lee, Ovanesyan)

4.3 Full distribution at NLL

By running the hard, jet, and soft functions from the scales µ0 = µH , µJ , and µS , respec-
tively, to the common factorization scale µ and performing the convolution in Eq. (2.13)
(see Appendix B for details), we find for the final resummed expression for the two-jet
angularity distribution with NLL/NLO perturbative accuracy

1
�0

d�2

d�a

PT����
NLL/NLO

=
��

1 + fH + 2fJ + fS

�
U�

a (�a;µ, µH , µJ , µS)
�

+

, (4.27)

where we defined

U�
a (�a;µ, µH , µJ , µS) � eK+�E�

�(��)

�
µH

Q

��H
�

µJ

Q

�2jJ�J
�

µS

Q

�jS�S
�

�(�a)
�a

1+�

�
, (4.28)

where

� � 2 �J(µ, µJ) + �S(µ, µS) (4.29)

K � KH(µ, µH) + 2KJ(µ, µJ) + KS(µ, µS) , (4.30)

with �H , KH given by Eq. (4.7) and �J,S and KJ,S given by Eq. (4.24) and

fH =
�s(µH)CF

�

�
�4 +

7�2

12
� 2 ln2 µH

Q
� 3 ln

µH

Q

�
(4.31a)

fJ =
�s(µJ)CF

�

�
f(a) +

3/4
1� a/2

H(�1� �) +
�2

6 + H(�1� �)2 � �(1)(��)
2(1� a)(1� a/2)

(4.31b)

+
2� a

1� a
ln2 µJ

Q�a
1/(2�a)

+
�

3
2

+
2

1� a
H(�1� �)

�
ln

µJ

Q�a
1/(2�a)

�

fS =
�s(µS)CF

�

�
1

1� a

�
��2

4
� 2H(�1� �)2 + 2�(1)(��)

�
(4.31c)

� 2 ln2 µS

Q�a
� 4H(�1� �) ln

µS

Q�a

�
,

and f(a) was defined in Eq. (3.36).
From these expressions, it is clear that the logarithms are minimized by choosing µH ,

µJ , and µS of order Q, Q�a
1/(2�a), and Q�a, respectively. We will describe in more detail

precisely which values we choose for these scales when we plot the full distributions in
Sec. 6.

4.4 Matching to QCD

One way to achieve matching onto QCD is to include three-jet operators in the matching
of the QCD current onto the SCET operators in Eq. (2.8) [44, 58]. For the scope of this
paper, however, we simply adopt the matching procedure described by [42], as implemented
in [11].

To O(�s) the full QCD distribution will take the form

1
�0

d�

d�a
= �(�a) +

��s

2�

�
Aa(�a) +O(�2

s) . (4.32)

– 27 –
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• PQCD NLL version of: (Berger, GS)

1

�0

d�

d⌧a
=

1

�(�E0(1/⌧a))
e�E(1/⌧a) ,

with E(1/⌧a) given by E(⌫) in:

quantities with tildes are the transforms in �a, and quantities without tildes denote

untransformed functions. Our results below are valid in the region where ln � is much
larger than |a| [18].

3. The Resummed Cross Section at NLL

3.1 The resummed cross section in moment space

The NLL resummed cross section (2.8) for a < 1 in moment space can be written as

[18]

1

�tot
�̃ (�, Q, a) = exp

�
2

1Z

0

du

u

� uQ2Z

u2Q2

dp2
T

p2
T

A (�s(pT ))
�
e�u1�a�(pT /Q)a

� 1
�

+
1

2
B

�
�s(
�

uQ)
� �

e�u(�/2)2/(2�a)

� 1
���

� [J (�, Q, a)]2 , (3.1)

where J (�, Q, a) is a factorized function associated with each jet. The resummation

is in terms of anomalous dimensions A(�s) and B(�s), which have finite expansions
in the running coupling,

A(�s) =
�X

n=1

A(n)
��s

�

�n
, (3.2)

and similarly for B. To NLL they are specified by the well-known coe�cients,

A(1) = CF , (3.3)

A(2) =
1

2
CF

�
CA

�
67

18
� �2

6

�
� 10

9
TFNf

�
, (3.4)

B(1) = �3

2
CF , (3.5)

independent of a. CF and CA are the Casimir charges of the fundamental and adjoint
representation of SU(Nc), respectively, Nf denotes the number of flavors, and TF =

1/2 is the usual normalization of the generators of the fundamental representation.
Eq. (3.1) reproduces the NLL resummed thrust cross section [15, 16] when a = 0.

3.2 Inversion of the transform

As it stands, the resummed cross section (3.1) is ambiguous, because of the singularity
of the perturbative running coupling. To define the integrals in (3.1) and to invert

the transformed cross section from moment space back to �a, we will follow the
method of Ref. [16]. In this approach, we avoid the singularities of the perturbative

– 5 –

-11

Slides from G. Sterman SCET & Jets Working Group Summary
Joint Theoretical-Experimental Workshop on Jets and Jet Substructure at the LHC

University of Washington, Jan. 11-15, 2010



• What we’ve seen so far:

• At NLL, when expressed as an integral over the running cou-
pling, the two are exactly the same formulas; things like

Z Q
Q⌧1/(2�a)

dµ

µ
A(↵s(µ)) ln

2

66664

µ

Q

3

77775

• Could the di↵erence be di↵erent implementations of running
↵s? Is not a “Landau pole” issue as long as ⌧ isn’t small.

• Clearly, have to look more closely here, and then run down
the gamut of other applications

-10
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