

Rapidity distributions in exclusive Z + jet and photon + jet events in pp collisions at sqrt(s)=7 TeV

Tomislav Seva (on behalf of the CMS Collaboration) IIHE – Universite Libre de Bruxelles Boston Jets Physics Workshop 2014

ULB

Vector Boson + Jets

- The study of the production and kinematics of vector bosons associated with jets is a major testing ground of perturbative QCD predictions and Monte Carlo techniques associated to
 - Madgraph, Alpgen, Sherpa, MCFM, BlackHat-Sherpa, Powheg, aMC@NLO, etc.
- A background to SM measurements (tt, single top, VBF, WWscattering) and new physics (Higgs, SUSY, etc)

We measure Yv,Yjet, Ysum, and Ydif, where V is either a photon or Z boson and a single exclusive jet

Z/Gamma + 1 Jet

Phys.Rev. D88 (2013) 112009

Focus on exclusive Z + 1 and γ + 1 jet events

Distributions of interest

- Rapidity distribution of the vector boson:
- Rapidity distribution of the leading jet:
- Rapidity difference:

 y_{diff} - Related to the scattering angle at the center of frame: $tanh(y_{diff}) \sim \cos \vartheta^*$ momentum

Rapidity average

$$y_{sum} = y_V + y_{jet}$$

- Rapidity boost from the lab frame to the center of momentum frame

Z/Gamma + 1 Jet

- Select events containing a vector boson and a jet that satisfy kinematic and ID selections. We use POG cuts and efficiencies when possible
- Estimate **background** contribution (photon only)
- Derive **efficiency** from MC and correct it with data-to-MC scale factors via tag and probe
- **Unfold** the distribution of Y_{jet} for Z + 1 jet
 - Other variables have unfolding correction consistent with zero
- **Combine** the electron and muon channels
 - Apply acceptance-correction for electrons
- Evaluate **Systematic** uncertainties
- **Compare** shapes with MCFM, Madgraph, and Sherpa
- **Evaluate** theory systematic uncertainty

Z/Gamma + 1 Jet: Events selection

2011 data at 7TeV with luminosity of 5 fb⁻¹

Photon

- p_T > 40 GeV
 for fully efficient trigger
- $|\eta| < 1.44$ calorimeter boundary
- Isolation tracker, ECAL and HCAL

Z boson

- Oppositely charged leptons with isolation of 15%(20%) for muons and electrons
- Lepton selection: $p_T > 20$ GeV and $|\eta| < 2.1$
- 76 GeV < m_z < 106 GeV, p_T > 40 GeV
- Z_{pt}>40 GeV

Jets

- Anti-kt with dR = 0.5
- $p_T > 30 \text{ GeV}$, $|\eta| < 2.4$ (for good tracker acceptance)
- Energy correction for non-primary (pileup) interactions
- Removal of jets that are dR < 0.5 from photon (lepton)
- Require exactly 1 jet, veto any other event that has more jets

Z/Gamma + 1 Jet: Events selection

Muon ID

- •Tracker and Global Muons
- •SUM Isolation Pt < 3
- $GeV(\Delta R=0.3)$
- •Beam spot position <2cm
- •Pixel hits >=1
- •Tracker hits>10
- •Chi2<10
- •Muon hits>1

Photon ID •Ecal Iso < 4.2 + 0.006*pT•Hcal Iso < 2.2+0.0025*pT•Track Iso < 2.0+0.001*pT•H/E<0.05 •Veto pixel seed • $\Delta R_{\gamma i}$ >0.5

Electron ID:

- •Zero missing hits on track
- •No conversions
- •Shower width < 0.01(0.03)
- •∆¢in < 0.06(0.03)
- • $\Delta\eta$ in< 0.004(0.007)
- •H/E< 0.04(0.15)
- •PF relative isolation <0.2 ($\Delta R=0.4$)

Jet ID

- •Anti-kt, R=0.5
- •Neutral hadron frac<0.99
- •Neutral EM frac <0.99
- •Number of Constituents>1
- •Charged Multiplicity> 0
- •Charged EM fraction<0.99

Z/Gamma + 1 Jet: Systematic uncertainties

Source	<i>y_V</i> (%)	y _{jet} (%)	y _{sum} (%)	$y_{\rm dif}$ (%)
Jet energy	0.4	0.6	0.3	0.4
Pileup reweight	0.5	0.1	0.3	0.1
Unfolding	_	5.0	_	—
e Statistical	7.1	2.2	8.0	5.7
e Efficiency	3.1	0.9	3.2	2.8
e Background	0.2	0.2	0.2	0.2
µ Statistical	6.3	1.9	6.1	4.6
μ Efficiency	1.5	0.4	1.2	1.2
μ Background	0.2	0.2	0.2	0.2
γ Statistical	6.6	19	8.6	15
γ Efficiency	0.4	0.6	0.4	1.0
γ Background	7.0	2.0	1.0	11

Jet energy scale is dominant correlated uncertainty

Pileup reweighing by vary the input minimum bias cross section by ±5%

Background subtraction: Z+jets: dominant is ttbar, VV (1%) γ+jets : decays of neutral hadrons (data driven matrix method)

Corrections for trigger, object selection and isolation efficiencies

Normalization of distributions

Dominant uncertainty comes from the limited size of data

Z/Gamma + 1 Jet: generator parameters

Measured distributions are compared to LO tools :

- Madgraph 5.1.1.0 with Pythia 6.4.24 for parton shower and hadronization
- Sherpa 1.3.1 + with APACIC++ parton shower

For both vector bosons + jets

Basic differences:

- factorization and normalization scales
- parton shower and hadronization
- matching between ME and PS CKKW for Sherpa and kt-MLM for Madgraph

NLO tools :

- MCFM for Z boson + jets
- Owens for Y + jets

Uncertainties tested: Scale up/down PDF uncertainty -> PDF4LHC prescription

Results: Z/Gamma + 1 Jet: yv

All predictions agree with data within 5 %

Results: Z/Gamma + 1 Jet: Y_J

All predictions agree with data within 5 %

Sherpa reproduces data for Z+1 jet over the complete range, MadGraph deviates between 5-20 % over the whole range, MCFM reproduces data for Y_{sum} < 1.2

12

MCFM and Owens reproduce data, Sherpa reproduces data better than MadGraph especially for Z+1 Jet

Summary

Measurement of rapidity distributions in Z/Gamma + 1 jet has been presented

Rapidity distributions of $|y_V|$ and $|y_J|$ are well described by MCFM, Sherpa and Madgraph predictions within 5%

Distribution of y_{sum} is described by all prediction better than 5% for $y_{sum} < 1.0$

Distribution of y_{diff} is described by MCFM and Sherpa well in the y_{diff} < 0.8. MCFM is better than 10% in whole range. Sherpa and Madgraph show increasing discrepancy in the the higher range.

For y_{diff} Sherpa reproduces data better than MadGraph

- Difference introduced in matching step of matrix elements and parton shower

Future plans: redo the analysis with 8TeV and ~20fb⁻¹ (x4 from 7TeV)

BACKUP

Documentation

- Contact: Stephan L. Linn
- CADI: SMP-12-004 <u>http://cms.cern.ch/iCMS/analysisadmin/</u> <u>cadi?ancode=SMP-12-004</u>)
- Paper: SMP-12-004 (Paper draft V10)
- https://twiki.cern.ch/twiki/bin/viewauth/CMS/ GammaJetAngular
- https://twiki.cern.ch/twiki/pub/CMS/GammaJetAngular/ rivet_CMS_2013_1258128.tgz -->should be in the Rivet 1.84
- Theory prediction: AN-2012-230
- γ+1 jet: AN-2011-497
- Z+1jet
 - e: AN-2012-135
 - μ: AN-2012-037

Combination of Electron and Muon

- Best Linear Unbiased Estimator
 - Andrea Valassi, NIM, A500, 391
 - Louis Lyons, Duncan Gibaut, and Peter Clifford, NIM, A270, 110

 $\begin{pmatrix} \sigma_{unc1}^2 + \sigma_{corr1}^2 & \sigma_{corr1} \sigma_{corr2} \\ \sigma_{corr1} \sigma_{corr2} & \sigma_{unc2}^2 + \sigma_{corr2}^2 \end{pmatrix}$

- JES and PU uncertainties are 100% correlated between electron and muon channel
- The covariance matrix has 2N dimension
 - N is the number of bins with non-zero contents
 - For each channel of Yjet, the bin-to-bin correlation is obtained from the covariance matrix of RooUnfold after unfolding
- For every bin of the observable, the uncorrelated uncertainty is at least 3 times of the correlated uncertainty

	Sherpa	Madgraph/ MadEvent	MCFM	Owens
PDF	CTEQ6.6M	CTEQ6.1L	CTEQ6.6M	CTEQ6.6M
μ_{F}	m _z	$(M_{Z}^{2}+\Sigma p_{jet}^{2})^{0.5}$	m _z	P _T
μ_R	m _z		m _z	P _T
ME	Comix	Madgraph	Internal	Internal
PS	APACIC	Pythia	None	None
Matching Zed +jets	CKKW(20GeV)	Kt-MLM(20GeV)	None	None
Matching Gamma+jets	CKKW(10GeV)	Kt- MLM(9-12GeV)	None	None
Hadronization		Pythia	None	none

Z+jets

Data compared to CMS detector simulation of signal and background MC - leptons $p_T > 20$ GeV, $|\eta| < 2.4$, jet $p_T > 50$ GeV, $|\eta| < 2.5$

Very good agreement both in shape and absolute scale (global NNLO k-factor applied)

MadGraph and Powheg describe the data well, Sherpa describes data pretty well in 2 and 3 jet bin, off by 10% for 1 jet bin, Pythia6 is shifted to lower value

Phys. Lett. B722 (2013) 238 **Z+jets** - azimuthal correlations $\Delta \Phi(Z, j_1)$

1/σ dσ/d(Δφ) [1/rad] 00 00 00

10 ----N_{jets} ≥ 3 10-1 > 150 GeV14 a hand dan kan kan kan ka 10-2 2.2 2.4 2.6 2.8 2 1.4 1.6 1.8 $\Delta \phi(Z,j)[rad]$

 $Z/\gamma \rightarrow I^{\dagger}\Gamma, p^{Z} > 150 \text{ GeV}$

POWHEG (Z+1j)

PYTHIAG (Z2)

Data

MADGRAPH

SHERFA

CMS, vs = 7 TeV, L = 5.0 fb⁻¹

N_{iets} 2

x600

100000

 $N_{jets} \ge 2$

3

x40

- ΔΦ(Z, j₁): ΔΦ between the Z and the leading jet for the inclusive multiplicities
 - $N_{iets} \ge 1, \ge 2, \ge 3$
 - normalized to unity
- ΔΦ observable with largest systematics
 - 5-6% near 0, to 2% near π
- Agreement with POWHEG and SHERPA improve for larger multiplicities
- Multi-parton LO + PS do better than LO + PS !!
- PS important for NLO 1 jet in multijet environment

Z+jets - azimuthal correlations $\Delta \Phi(j_i, j_k)$

- ΔΦ(j₁, j₂)
- ΔΦ(j₁, j₃)
- ΔΦ(j₂, j₃)
- normalized to unity

 improved agreement with PYTHIA consistent with increased phase space available for parton emission

W + 2 jets - double parton interaction

Z+jets - EW Z+2 forward jets

CMS-FSQ-12-019 arXiv:1305.7389

- Z production in association with two iets at order α^{4} EW
 - includes TGC vertex (VBF), suppressed by a factor ~2.5 by interference terms
 - high pT jets with large rapidity distance
- σ (EW llij)_{NLO} = 166 fb (DY ~ 29.3 pb!)
 - M_{ii} > 120 GeV, M_{ll} > 50 GeV
 - p_{Ti} > 25 GeV, |n_i| < 4
 - CT10 and μ_R = μ_F = 90 GeV
- Optimized event selection (S/B ~ 11%) z
 - leptons: $\ell\ell$ with $p_{T\ell} > 20$ GeV, $|\eta_{\ell}| < 2.4$
 - Z: |M_{ee}-M_Z| < 20 GeV (15 GeV for μμ)
 - two leading p_T jets in |η| < 3.6
 - p_T(1) > 65 GeV; p_T(2) > 40 GeV
 - M_{ii} > 600 GeV
 - central Z in jj rest frame
 - $|y^*| = |y_Z (y_{i1} y_{i2})/2| < 1.2$

Signal extraction with MVA -

Boosted decision tree, including tagged jets and Z kinematics $\sigma_{\text{meas, }\mu\mu+\text{ee}}^{\text{EWK}} = 154 \pm 24(\text{stat}) \pm 46(\text{exp.syst.}) \pm 27(\text{th.syst}) \pm 3(\text{lumi}) \text{ fb}$

Important benchmark processes in search for VBF H!!

Jet activity profiles: MadGraph-based predictions in agreement with data (reco level) $\sigma(\text{EW } lljj)$ extracted (~2.6 σ), compatible with prediction (NLO QCD corrections)

CMS uuji

101

10

103

10²

10

γ**+jets**

Ratios of cross-sections with different rapidity orientations between jets and the photon

reasonable well predicted by Sherpa and Jetphox

Y+jets: uncertainties

• Biggest uncertainty on the purity determination

		$ \eta^{\gamma} < 1.4442$			
P_T^{γ} GeV	efficiency (%)	unfolding (%)	purity (%)	total (%)	
40-45	2.5	2.1	4.9 - 9.3	5.9 - 9.9	
45-50	1.2	2.5	4.9 - 17.0	5.5 - 17.2	
50-60	4.5	2.6	4.2 - 13.4	6.7 - 14.4	
60-70	4.5	2.4	3.7 - 11.4	6.3 - 12.5	
70-85	4.5	1.2	4.6 - 5.7	6.6 - 7.4	
85-100	4.5	1.4	2.2 - 3.1	5.2 - 5.6	
100-145	4.5	1.4	1.8 - 2.5	5.0 - 5.4	
145-300	4.5	1.2	1.4 - 2.6	4.9 - 5.3	
$1.556 < \eta^{\gamma} < 2.5$					
$P_T^{\gamma} \text{GeV}$	efficiency (%)	unfolding (%)	purity (%)	total (%)	
40-45	3.0	2.1	6.9 - 9.9	7.8 - 10.5	
45-50	3.5	2.5	8.6 - 37.5	9.6 - 37.7	
50-60	5.0	2.6	7.2 - 24.5	9.1 - 25.1	
60-70	5.0	2.4	7.0 - 12.4	9.0 - 13.5	
70-85	5.0	1.2 - 5.0	10.0 - 13.3	11.3 - 15.1	
85-100	5.0	1.4 - 5.0	2.8 - 4.6	5.9 - 8.0	
100-145	5.0	1.4 - 4.0	2.8 - 6.3	5.9 - 8.2	
145-300	5.0	1.2 - 2.1	2.9 - 5.1	6.1 - 7.3	

26

Z/Gamma + 1 Jet: y_v

Merging/Matching

Merging same for both MC Conclude: MLM(Madgraph) rejection vs CKKW(sherpa) weighting affects how events are "matched".

